Log in

Role of the V-Notch Location in the Impact Toughness of 9 Pct Cr-CrMoV Dissimilar Welded Joints

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The location of the V-notch in a weld metal (WM) can have a significant influence on the impact toughness of a 9 weight percent (9 pct) Cr-CrMoV dissimilar welded joint. The specimens with the V-notch at position I, which was parallel to the filling direction, presented small fluctuations in the impact toughness, while relatively larger fluctuations occurred in the specimens with the V-notches parallel to the welding direction (position II). Several equiaxed grain zones favorable to hindering the crack propagation could ensure less fluctuation in the impact toughness. In contrast, the columnar and equiaxed grain zones could be clearly distinguished in the specimens with the V-notches at position II. The differences in the crack propagation paths and tip locations of the V-notches are regarded as the main factors causing the fluctuations in the impact toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.L. Zhu and F.Z. Xuan, Mater. Des., 2010, vol. 31 pp. 3346-52.

    CAS  Google Scholar 

  2. H.T. Wang, G.Z. Wang, F.Z. Xuan and S.T. Tu, Eng. Fail. Anal., 2013, vol. 28 pp. 134-48.

    CAS  Google Scholar 

  3. X. Yu, Y.C. Lim, R. Smith, S.S. Badu, D.F. Farson, J.C. Lippold and S. Mccracken, Mater. Sci. Tech., 2014, vol. 30 pp. 930-37.

    CAS  Google Scholar 

  4. A.H. Saedi, E. Hajjari and S.M. Sadrossadat, Metall. Mater. Trans. A, 2018, vol. 49 pp. 5497-508.

    Google Scholar 

  5. K. Ding, S.F. Qiao, S.P. Liu, B.G. Zhao, X. Huo, X.H. Li and Y.L. Gao, Metall. Mater. Trans. A, 2019, vol. 50 pp. 4652-64.

    Google Scholar 

  6. A. Joseph, S.K. Rai, T. Jayakumar and N. Murugan, Int. J. Pres. Ves. Pip., 2005, vol. 82 pp. 700-05.

    CAS  Google Scholar 

  7. X.L. Deng, F.G. Lu, H.C. Cui, X.H. Tang and Z.G. Li, Mater. Sci. Eng. A, 2016, vol. 651 pp. 1018-30.

    CAS  Google Scholar 

  8. D.H. Meng, F.G. Lu, H.C. Cui, Y.M. Ding, X.H. Tang and X. Huo, J. Mater. Res., 2015, vol. 30 pp. 197-205.

    CAS  Google Scholar 

  9. B.T. Alexandrov, J.C. Lippold, J.W. Sowards, A.T. Hope and D.R. Saltzmann, Weld. World, 2013, vol. 57 pp. 39-53.

    CAS  Google Scholar 

  10. G. Cam, S. Erim, C. Yeni and M. Kocak, Weld. J., 1999, vol. 78 pp. 193 s-201 s.

    Google Scholar 

  11. G. Cam, C. Yeni, S. Erim, V. Ventzke and M. Kocak, Sci. Technol. Weld. Joing, 1998, vol. 3 pp. 177-89.

    CAS  Google Scholar 

  12. G. Cam, M. Kocak and J.F.D. Santos, Weld. World, 1999, vol. 43 pp. 13-26.

    CAS  Google Scholar 

  13. J.F.D. Santos, G. Cam, F. Torster, A. Insfran, S. Riekehr, V. Ventzke and M. Kocak, Weld. World, 2000, vol. 44 pp. 42-64.

    Google Scholar 

  14. K. Ding, P. Wang, X. Liu, X.H. Li, B.G. Zhao and Y.L. Gao, J. Mater. Eng. Perform., 2018, vol. 27 pp. 6027-39.

    CAS  Google Scholar 

  15. H. Shahhosseini and M. Alishahi, Mater. Lett., 2012, vol. 67 pp. 259-62.

    Google Scholar 

  16. J. Hou, Q.J. Peng, Y. Takeda, J. Kuniya, T. Shoji, J.Q. Wang, E.H. Han and W. Ke, J. Mater. Sci., 2010, vol. 45 pp. 5332-38.

    CAS  Google Scholar 

  17. P. Liu, F.G. Lu, X. Liu, H.J. Ji and Y.L. Gao, J. Alloys Compd., 2014, vol. 584 pp. 430-37.

    CAS  Google Scholar 

  18. R. Santosh, G. Das, S. Kumar, P.K. Singh and M. Ghosh, Metall. Mater. Trans. A, 2018, vol. 49 pp. 2099-112.

    Google Scholar 

  19. X.F. Wang, C.D. Shao, X. Liu and F.G. Lu, J. Mater. Sci. Technol., 2018, vol. 34 pp. 720-31.

    Google Scholar 

  20. C.D. Shao, F.G. Lu, H.C. Cui and Z.G. Li, International Journal of Fatigue, 2018, vol. 113 pp. 1-10.

    CAS  Google Scholar 

  21. Q.L. Cui, D. Parkes, D. Westerbaan, S.S. Nayak, Y. Zhou, D.C. Saha, D. Liu, F. Goodwin, S. Bhole and D.L. Chen, J. Mater. Eng. Perform., 2017, vol. 26 pp. 783-91.

    CAS  Google Scholar 

  22. K. Ding, T. Wei, M.J. Fan, Y.H. Zhang, G.Z. Wu, Y.B. Zhang, Y. He, B.G. Zhao and Y.L. Gao, Mater. Lett., 2019, https://doi.org/10.1016/j.matlet.2019.126978.

    Article  Google Scholar 

  23. J. Cermak and L. Kral, Mater. Lett., 2014, vol. 116 pp. 402-04.

    CAS  Google Scholar 

  24. A. Kulkarni, D.K. Dwivedi and M. Vasudevan, Mater. Sci. Eng. A, 2018, vol. 731 pp. 309-23.

    CAS  Google Scholar 

  25. Y.Y. You, R.K. Shiue, R.H. Shiue and C. Chen, J. Mater. Sci. Lett., 2001, vol. 20 pp. 1429-32.

    CAS  Google Scholar 

  26. K. Laha, S. Latha, K.B.S. Rao, S.L. Mannan and D.H. Sastry, Mater. Sci. Tech., 2001, vol. 17 pp. 1265-72.

    CAS  Google Scholar 

  27. Q.J. Wu, F.G. Lu, H.C. Cui, X. Liu, P. Wang and Y.L. Gao, Mater. Lett., 2015, vol. 141 pp. 242-44.

    CAS  Google Scholar 

  28. Q. Guo, F.G. Lu, X. Liu, R.J. Yang, H.C. Cui and Y.L. Gao, Mater. Sci. Eng. A, 2015, vol. 638 pp. 240-50.

    CAS  Google Scholar 

  29. W. Liu, X. Liu, F.G. Lu, X.H. Tang, H.C. Cui and Y.L. Gao, Mater. Sci. Eng. A, 2015, vol. 644 pp. 337-46.

    CAS  Google Scholar 

  30. R. Mittal and B.S. Sidhu, J. Mater. Process. Tech., 2015, vol. 220 pp. 76-86.

    CAS  Google Scholar 

  31. J. Akram, P.R. Kalvala, M. Misra and I. Charit, Mater. Sci. Eng. A, 2017, vol. 688 pp. 396-406.

    CAS  Google Scholar 

  32. V.D. Vijayanand, S.D. Yadav, P. Parameswaran, K. Laha, P.K. Parida and G.V.P. Reddy, Metall. Mater. Trans. A, 2018, vol. 49 pp. 4409-12.

    Google Scholar 

  33. K. Ding, H.J. Ji, Q.L. Zhang, X. Liu, P. Wang, X.H. Li, L. Zhang and Y.L. Gao, J. Iron Steel Res. Int., 2018, vol. 25 pp. 839-46.

    Google Scholar 

  34. K. Ding, H.J. Ji, X. Liu, P. Wang, Q.L. Zhang, X.H. Li and Y.L. Gao, J. Iron Steel Res. Int., 2018, vol. 25 pp. 847-53.

    Google Scholar 

  35. W. Liu, F.G. Lu, Y.H. Wei, Y.M. Ding, P. Wang and X.H. Tang, Mater. Des., 2016, vol. 108 pp. 195-206.

    CAS  Google Scholar 

  36. H.H. Wang, H.Q. Zhang and J.F. Li, J. Mater. Process. Tech., 2009, vol. 209 pp. 2803-11.

    CAS  Google Scholar 

  37. R.Q. Lin, H.C. Cui, F.G. Lu, X. Huo and P. Wang, J. Mater. Res., 2016, vol. 31 pp. 3597-609.

    CAS  Google Scholar 

  38. X. Liu, Z.P. Cai, X.L. Deng and F.G. Lu, J. Mater. Res., 2017, vol. 32 pp. 3117-27.

    CAS  Google Scholar 

  39. H.G. Armaki, R. Chen, K. Maruyama and M. Igarashi, Metall. Mater. Trans. A, 2011, vol. 42 pp. 3084-94.

    Google Scholar 

  40. M. Taneike, K. Sawada and F. Abe, Metall. Mater. Trans. A, 2004, vol. 35 pp. 1255-62.

    CAS  Google Scholar 

  41. Z. Qu and C.J. Mcmahon, Metall. Mater. Trans. A, 1983, vol. 14 pp. 1101-08.

    CAS  Google Scholar 

  42. F.F. Chen, W. Wang, K. Wang, P.F. Ho, H. Li, X. Huang and W.J. Chen, Mater. Sci. Tech., 2018, vol. 34 pp. 1441-46.

    Google Scholar 

  43. M. Divya, C.R. Das, S. Mahadevan, S.K. Albert, R. Pandian, S.K. Kar, A.K. Bhaduri and T. Jayakumar, Metall. Mater. Trans. A, 2015, vol. 46 pp. 2554-67.

    Google Scholar 

  44. Q.J. Wu, F.G. Lu, H.C. Cui, Y.M. Ding, X. Liu and Y.L. Gao, Mater. Sci. Eng. A, 2014, vol. 615 pp. 98-106.

    CAS  Google Scholar 

  45. R. Chandel, R.F. Orr, J.A. Gianetto, J.T. Mcgrath and R.F. Knight, J. Mater. Energy Sys., 1985, vol. 7 pp. 137-46.

    CAS  Google Scholar 

  46. B. Garbarz and B.N. Harańczyk, Mater. Sci. Tech., 2015, vol. 31 pp. 773-80.

    CAS  Google Scholar 

  47. E. Maina, D.N. Crowther, J.R. Banerjee and B. Mintz, Mater. Sci. Tech., 2012, vol. 28 pp. 390-96.

    CAS  Google Scholar 

  48. R.K. Shiue, K.C. Lan and C. Chen, Mater. Sci. Eng. A, 2000, vol. 287 pp. 10-16.

    Google Scholar 

  49. F.G. Lu, P. Liu, H.J. Ji, Y.M. Ding, X.J. Xu and Y.L. Gao, Mater. Charact., 2014, vol. 92 pp. 149-58.

    CAS  Google Scholar 

  50. P.Y. Wang, Z.G. Lv, S.Q. Zheng, Y.M. Qi, J. Wang and Y.J. Zheng, Int. J. Hydrogen Energ., 2015, vol. 40 pp. 11514-21.

    CAS  Google Scholar 

  51. W. Wang, T.G. Liu, X.Y. Cao, Y.H. Lu and T. Shoji, Mater. Sci. Eng. A, 2018, vol. 729 pp. 331-39.

    CAS  Google Scholar 

  52. C.A. Huang, T.H. Wang, Y.Z. Cahang, W.C. Han and C.H. Lee, Sci. Technol. Weld. Joi., 2008, vol. 13 pp. 646-55.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Grant No. U1760102), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, P.R. China, the State Key Laboratory of Development and Application Technology of Automotive Steels (Baosteel Group), and Shanghai Science and Technology Committee (Grant No. 13DZ1101502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulai Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 26, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, K., Zhao, B., Huo, X. et al. Role of the V-Notch Location in the Impact Toughness of 9 Pct Cr-CrMoV Dissimilar Welded Joints. Metall Mater Trans A 51, 1699–1706 (2020). https://doi.org/10.1007/s11661-020-05663-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05663-x

Navigation