Log in

Network-Strengthened Ti-6Al-4V/(TiC+TiB) Composites: Powder Metallurgy Processing and Enhanced Tensile Properties at Elevated Temperatures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

A Correction to this article was published on 23 December 2019

This article has been updated

Abstract

Starting with graphite, TiB2, and Ti-6Al-4V powders, the present work demonstrated that hybrid (TiC+TiB) network-strengthened Ti-6Al-4V—based composites can be fabricated via an integrated low-energy ball-milling and reaction hot-pressing-sintering technique. With the aid of phase equilibrium and powder densification kinetic calculations, the corresponding sintering parameters were optimized and tunable network microstructures were subsequently achieved. Tensile properties for these composites were examined at elevated temperatures of 500 °C, 550 °C, 600 °C, and 650 °C, the results of which indicated that the 50-μm network configuration with 5 vol pct reinforcer content led to the most enhanced tensile strength compared to both Ti-6Al-4V alloys and solely TiB-reinforced Ti-6Al-4V composites. The underlying strengthening mechanisms were mainly ascribed to carbon interstitial dissolution, reinforcer-assisted grain refinement, and extensive dispersoids. It was recognized from fractographic analyses that the matrix/reinforce interface contributed to the major crack propagation source at temperatures below 550 °C, leading to brittlelike fracture along the network boundary; however, once testing temperatures rose above 600 °C, matrix tearing and reinforcer cut-through mechanisms took place, giving rise to ductile fracture. Based on the experimental observations and theoretical calculations, future perspectives regarding the processing and microstructural manipulation for advanced high-temperature titanium matrix composites were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

  • 23 December 2019

    In the original article, there is an error in Figure 1. The unit of Specific strength should be MPa/(g•cm-3). Following is the corrected figure:

Notes

  1. INSTRON-1186 is a trademark of Materials Testing Company, Norwood, MA

  2. Zeiss SUPRA 55 Sapphire is a trademark of One Zeiss Drive, Thornwood, NY

  3. INCA 300 is a trademark of Tubney Woods, Abingdon, UK

  4. JMatPro is a trademark of Sente Software Ltd., UK.

References

  1. 1.T.M. Pollock: Nat. Mater., 2016, vol. 15, pp. 809–15.

    CAS  Google Scholar 

  2. 2.A.L. Pilchak, G.A. Sargent, and S.L. Semiatin: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 908–19.

    Google Scholar 

  3. 3.R.J. Bennett, R. Krakow, A.S. Eggeman, C.N. Jones, H. Murakami, and C.M.F. Rae: Acta Mater., 2015, vol. 92, pp. 278–89.

    CAS  Google Scholar 

  4. 4.A.M. Birt, V.K. Champagne, R.D. Sisson, and D. Apelian: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 1931–43.

    Google Scholar 

  5. 5.S.L. Wei, L.J. Huang, X.T. Li, Q. An, and L. Geng: J. Alloys Compd., 2018, vol. 752, pp. 164–78.

    CAS  Google Scholar 

  6. 6.D.A. Brice, P. Samimi, I. Ghamarian, Y. Liu, R.M. Brice, R.F. Reidy, J.D. Cotton, M.J. Kaufman, and P.C. Collins: Corros. Sci., 2016, vol. 112, pp. 338–46.

    CAS  Google Scholar 

  7. 7.Y. Niu, H. Hou, M. Li, and Z. Li: Mater. Sci. Eng. A, 2008, vol. 492, pp. 24–28.

    Google Scholar 

  8. 8.P.L. Narayana, S.W. Kim, J.K. Hong, N.S. Reddy, and J.T. Yeom: Mater. Sci. Eng. A, 2018, vol. 718, pp. 287–91.

    CAS  Google Scholar 

  9. 9.I.V. Okulov, M. Bönisch, A.V. Okulov, A.S. Volegov, H. Attar, S. Ehtemam-Haghighi, M. Calin, Z. Wang, A. Hohenwarter, I. Kaban, K.G. Prashanth, and J. Eckert: Mater. Sci. Eng. A, 2018, vol. 733, pp. 80–86.

    CAS  Google Scholar 

  10. 10.L.Y. Du, L. Wang, W. Zhai, L. Hu, J.M. Liu, and B. Wei: Mater. Des., 2018, vol. 160, pp. 48–57.

    CAS  Google Scholar 

  11. 11.T.M. Butler, C.A. Brice, W.A. Tayon, S.L. Semiatin, and A.L. Pilchak: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 4441–46.

    Google Scholar 

  12. 12.I.N. Maliutina, H. Si-Mohand, R. Piolet, F. Missemer, A.I. Popelyukh, N.S. Belousova, and P. Bertrand: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 378–87.

    Google Scholar 

  13. 13.I. Gurrappa and A.K. Gogia: Surf. Coat. Technol., 2001, vol. 139, pp. 216–21.

    CAS  Google Scholar 

  14. 14.C. Leyens, J.W. Van Liere, M. Peters, and W.A. Kaysser: Surf. Coat. Technol., 1998, vols. 108–109, pp. 30–35.

    Google Scholar 

  15. 15.L.J. Huang, L. Geng, and H.X. Peng: Progr. Mater. Sci., 2015, vol. 71, pp. 93–168.

    CAS  Google Scholar 

  16. 16.C. Poletti, M. Balog, T. Schubert, V. Liedtke, and C. Edtmaier: Compos. Sci. Technol., 2008, vol. 68, pp. 2171–77.

    CAS  Google Scholar 

  17. 17.S.C. Tjong and Y.W. Mai: Compos. Sci. Technol., 2008, vol. 68, pp. 583–601.

    CAS  Google Scholar 

  18. 18.K.B. Panda and K.S.R. Chandran: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1371–85.

    CAS  Google Scholar 

  19. T.W. Clyne and P.J. Withers: An Introduction to Metal Matrix Composites. Cambridge University Press, Cambridge, 1995.

    Google Scholar 

  20. 20.J.C. Hanan, G.A. Swift, E. Üstündag, I.J. Beyerlein, J.D. Almer, U. Lienert, and D.R. Haeffner: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3839–45.

    CAS  Google Scholar 

  21. 21.K.M. Rahman, V.A. Vorontsov, S.M. Flitcroft, and D. Dye: Adv. Eng. Mater., 2017, vol. 19, pp. 3–8.

    Google Scholar 

  22. 22.S. Mahesh and A. Mishra: Eng. Fract. Mech., 2018, vol. 194, pp. 86–104.

    Google Scholar 

  23. 23.Y. Jiao, L. Huang, and L. Geng: J. Alloys Compd., 2018, vol. 767, pp. 1196–1215.

    CAS  Google Scholar 

  24. C. Leyens and M. Peters: Titanium and Titanium Alloys Fundamentals and Applications, John Wiley & Son, New York, 2003.

  25. F. Appel, J.D.H. Paul, and M. Oehering: Gamma Titanium Aluminide Alloys Science and Technology. Wiley, New York, 2011.

    Google Scholar 

  26. 26.Y. Li, L. **ao, W. Lu, J. Qin, and D. Zhang: Mater. Sci. Eng. A, 2008, vol. 488, pp. 415–19.

    Google Scholar 

  27. 27.B.J. Choi, I.Y. Kim, Y.Z. Lee, and Y.J. Kim: Wear, 2014, vol. 318, pp. 68–77.

    CAS  Google Scholar 

  28. 28.J.P. Qu, C.J. Zhang, J.C. Han, S.Z. Zhang, F. Yang, and Y.Y. Chen: Vacuum, 2017, vol. 144, pp. 203–06.

    CAS  Google Scholar 

  29. 29.L.J. Huang, L. Geng, A.B. Li, F.Y. Yang, and H.X. Peng: Scripta Mater., 2009, vol. 60, pp. 996–99.

    CAS  Google Scholar 

  30. 30.S. Wang, L.J. Huang, L. Geng, F. Scarpa, Y. Jiao, and H.X. Peng: Sci. Rep., 2017, vol. 7, pp. 1–13.

    Google Scholar 

  31. 31.Y. Jiao, L.J. Huang, S.L. Wei, L. Geng, M.F. Qian, and S. Yue: Corros. Sci., 2018, vol. 140, pp. 223–30.

    CAS  Google Scholar 

  32. 32.H. Rastegari and S.M. Abbasi: Mater. Sci. Eng. A, 2013, vol. 564, pp. 473–77.

    CAS  Google Scholar 

  33. 33.Z. Yang, H. Huan, C. Jiang, W. Li, X. Liu, and S. Lyu: Thin Solid Films, 2011, vol. 519, pp. 4804–08.

    Google Scholar 

  34. 34.L. **e, Q. Zhou, X. **, Z. Wang, C. Jiang, W. Lu, J. Wang, and Q. Jane Wang: Int. J. Fatigue, 2014, vol. 66, pp. 127–37.

    CAS  Google Scholar 

  35. S.J. Kang: Sintering: Densification, Grain Growth, and Microstructure. Elsevier, Anmsterdam, 2005.

    Google Scholar 

  36. R.W. Balluffi, S.M. Allen, and W.C. Carter: Kinetics of Materials, Wiley, Cambridge, 2005.

    Google Scholar 

  37. 37.L.J. Huang, L. Geng, H.X. Peng, and B. Kaveendran: Mater. Sci. Eng. A, 2012, vol. 534, pp. 688–92.

    CAS  Google Scholar 

  38. 38.S. Balachandran, S. Kumar, and D. Banerjee: Acta Mater., 2017, vol. 131, pp. 423–34.

    CAS  Google Scholar 

  39. 39.S.L. Wei, L.J. Huang, J. Chang, W. Zhai, S.J. Yang, and L. Geng: Mater. Lett., 2016, vol. 175, pp. 291–95.

    CAS  Google Scholar 

  40. 40.E. Nes, N. Ryum, and O. Hunderi: Acta Mater., 1985, vol. 33, pp. 11–22.

    CAS  Google Scholar 

  41. 41.A. Takeuchi and A. Inoue: Mater. Trans., 2005, vol. 45, pp. 2817–29.

    Google Scholar 

  42. 42.R.L. Fleischer: Acta Metall., 1962, vol. 10, pp. 835–42.

    CAS  Google Scholar 

  43. 43.E.O. Hall: Proc. Phys. Soc. Sect. B, 1951, vol. 64, p. 747.

    Google Scholar 

  44. 44.R.L. Jones and H. Conrad: Trans. AIME, 1969, vol. 245, pp. 779–89.

    CAS  Google Scholar 

  45. 45.K.Y. Wang, T.D. Shen, M.X. Quan, and W.D. Wei: J. Mater. Sci. Lett., 1993, vol. 12, pp. 1818–20.

    CAS  Google Scholar 

  46. 46.A.A. Popov, I.Y. Pyshmintsev, S.L. Demakov, A.G. Illarionov, T.C. Lowe, A.V. Sergeyeva, and R.Z. Valiev: Scripta Mater., 1997, vol. 37, pp. 1089–94.

    CAS  Google Scholar 

  47. 47.R.J. Lederich, S.M.L. Sastry, E.J. O’Neal, and B.B. Rath: Mater. Sci. Eng., 1978, vol. 33, pp. 183–88.

    CAS  Google Scholar 

  48. A. Argon: Strengthening Mechanisms in Crystal Plasticity. Oxford University Press, Oxford, 2012.

    Google Scholar 

  49. M.R. Akbarpour, E. Salahi, F. A. Hesari, H.S. Kim, and A. Simchi: Mater. Des., 2013, vol. 52, pp. 881–87.

    CAS  Google Scholar 

  50. 50.A.A. Griffith: Phil. Trans. Ser. A, 1920, vol. 221, pp. 163–98.

    Google Scholar 

  51. 51.M. Wang, Z. Yang, B. Ji, F. Zhu, L. **ao, W. Lu, J. Qin, and D. Zhang: Mater. Sci. Eng. A, 2008, vol. 491, pp. 192–98.

    Google Scholar 

  52. 52.C.J. Zhang, F.T. Kong, S.L. **ao, E.T. Zhao, L.J. Xu, and Y.Y. Chen: Mater. Sci. Eng. A, 2012, vol. 548, pp. 152–60.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key R&D Program of China (Grant No. 2017YFB0703100), National Natural Science Foundation of China (Grant Nos. 51822103, 51671068, and 51731009), and Fundamental Research Funds for the Central Universities (Grant No. HIT.BRETIV.201902). One of the authors (SLW) expresses his gratitude to Dr. Shao-Shi Rui, Tsinghua University, P.R. China, for the stimulating discussion on fracture mechanics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lujun Huang or Lin Geng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 21, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, S., Huang, L., Li, X. et al. Network-Strengthened Ti-6Al-4V/(TiC+TiB) Composites: Powder Metallurgy Processing and Enhanced Tensile Properties at Elevated Temperatures. Metall Mater Trans A 50, 3629–3645 (2019). https://doi.org/10.1007/s11661-019-05244-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05244-7

Navigation