Log in

Effect of Alloying Element Partition in Pearlite on the Growth of Austenite in High-Carbon Low Alloy Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The growth of austenite from pearlite in high-carbon low alloy steel occurs with and without alloy element redistribution depending on the amount of superheating above the eutectoid temperature. The transition temperature of austenite growth (denoted PNTT) is calculated as a function of pearlite transformation temperature and subsequent holding time, which affect the degree of partitioning in pearlite, using experimental partition coefficients k θ/α of Mn, Cr, Co, Si, and Ni reported in the literature. PNTT is the highest in Cr-containing alloys which have the largest k θ/α in pearlite. Post-transformation aging, usually accompanied by cementite spheroidization, leads to a marked increase of PNTT in Mn and Cr alloys. PNTT of Ni alloy does not depend on pearlite transformation temperature because practically the formation of partitioned pearlite is severely limited in this alloy for kinetic reasons. Above PNTT, austenite growth occurs fast initially, but slows down in the order of ten seconds when the ferrite disappears, and the remaining small carbide particles dissolve very slowly under the control of alloy element diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R.F. Mehl and W.C. Hagel: Prog.Met.Phys., 1956, vol. 6, pp. 74-134

    Article  Google Scholar 

  2. G. Molinder: Acta Metall., 1956, vol. 4, pp. 565-571

    Article  Google Scholar 

  3. R.R. Judd and H.W Paxton: Trans. TMS-AIME, 242(1968), 206-215.

    Google Scholar 

  4. G.R. Speich and A. Szirmae: Trans. TMS-AIME, 245(1969), 1063-1074

    Google Scholar 

  5. M. Hillert, K. Nilsson, L.E. Törndahl: JISI, 1971, vol. 209, pp. 49-66.

    Google Scholar 

  6. D.E. Coates: Metal. Trans., 1972, vol. 3, pp. 1203-1212.

    Article  Google Scholar 

  7. D.E. Coates: Metal. Trans., 1972, vol. 4, pp. 1077-1086.

    Article  Google Scholar 

  8. J.B. Gilmour, G.R. Purdr, and J.S. Kirkaldy, Metall.Trans., vol. 3, 1972, 1455-1464

    Article  Google Scholar 

  9. Y. **a, M. Enomoto, Z.G. Yang, Z.D. Li and C. Zhang: Phil.Mag., 2013, vol. 93, pp. 1095-1109.

    Article  Google Scholar 

  10. N. Ridley: In Phase Transformations in Ferrous Alloys, eds. A.R. Marder and J.I. Goldstein, TMS, Warrendale, PA, 1984, pp. 201–36.

  11. M.L. Picklesimer, D.L. McElroy, T.M. Kegley, Jr., E.E. Stansbury and J.H. Frye, Jr., TMS-AIME, 1960, vol. 218, pp. 473-480

    Google Scholar 

  12. N.A. Razik, G.W. Lorimer, N. Ridley: Acta Metall., 1974, vol. 22, pp. 1249-1258.

    Article  Google Scholar 

  13. N.A. Razik, G.W. Lorimer, N. Ridley: Metall. Trans. A, 1976, vol. 7, pp. 209-214.

    Article  Google Scholar 

  14. J. Chance and N. Ridley: Metall. Trans. A, 1981, vol. 12A, pp. 1205-1213

    Article  Google Scholar 

  15. N. Ridley, D. Burgess: Metal Science, 1984, vol. 18, pp. 7-12.

    Article  Google Scholar 

  16. S.A. Al-Salman, G.W. Lorimer and N. Ridley: Acta Metall., 1979, vol. 27, pp. 1391-1400.

    Article  Google Scholar 

  17. S.A. Al-Salman and N. Ridley: Scripta Metall., 1984, vol. 18, pp. 789-791.

    Article  Google Scholar 

  18. S.A. Al-Salman, G.W. Lorimer and N. Ridley: Metall. Trans. A, 1979, vol. 10, pp. 1703-1709.

    Article  Google Scholar 

  19. N. Ridley, M.A. Malik and G.W. Lorimer: Mater. Char., 1990, vol. 25, pp. 125-141

    Article  Google Scholar 

  20. A.E. Nehrenberg, Trans. AIME, vol. 188, 1950, 162-174

    Google Scholar 

  21. L. Karmazin: Mater.Sci.Eng., vol. A142, 1991, 71-77

    Article  Google Scholar 

  22. M.M. Aranda, R. Rementeria, J. Poplawsky, E. Urones-Garrote and, C. Capdevila: Scripta Mater., vol. 104, 2015, 67-70

    Article  Google Scholar 

  23. Thermo-calc is Trademark of Thermo-Calc Software: http://www.thermocalc.com/

  24. J.S. Kirkaldy, B.A. Thomson, and E.A. Baganis: In Hardenability Concepts with Applications to Steel, eds. D.V. Doane and J.S. Kirkaldy, TMS, 1978, pp. 82–125

  25. S.K. Tewari and P.C. Sharma: Metall. Trans. A, vol. 16 , 1985, 597–603

    Article  Google Scholar 

  26. M. Hillert: In Solid → Solid Phase Transformations, eds. H.I. Aaronson, D.E. Laughlin, R.F. Sekerka and C.M. Wayman, TMS, 1981, pp. 789–805.

  27. C.R. Hutchinson, R.E. Hackenberg and G.J. Shiflet: Acta mater., 2004, vol. 52, pp. 3565-3585.

    Article  Google Scholar 

  28. M. Gouné, P. Maugis, and J. Drillet: J. Mater. Sci. Technol., 2012, vol. 28, pp. 728-736.

    Article  Google Scholar 

  29. J.D. Faires and R.L. Burden: Numerical Method, PWS-KENT Publishing Company, Boston, 1993, pp.32-33

    Google Scholar 

  30. G. Miyamoto, H. Usuki, Z.D. Li and T. Furuhara: Acta Mater., 2010, vol. 58, pp. 4492-4502

    Article  Google Scholar 

  31. L. Kong, Y.H. Liu, J. Liu, Y Song, S.S. Li, R.H. Zhang, T.J. Li, Y. Liang: J. Alloys Comp., vol. 648, 2015, 494-499

    Article  Google Scholar 

  32. T. Nishizawa, Bulletin of Japan Institute of Metals, vol. 12, 1973, 401-417.

    Article  Google Scholar 

  33. J. Ågren and G.P. Vassilev: Mater.Sci.Eng., 1984, vol. 64, pp. 95-103

    Article  Google Scholar 

  34. Z.K. Liu, L. Höglund, B. Jönsson and J. Ågren: Metall.Trans.A, 1991, vol. 22A, pp.1745-1752.

    Article  Google Scholar 

  35. G.H. Zhang, J.Y. Chae, K.H.Kim, D.W. Suh: Mater.Sci.Eng., vol. 81, 2013, 56-67

    Google Scholar 

  36. J.D. Verhoeven and E.D. Gibson: Metall.Mater.Trans.A, 1998, vol. 29A, pp.1181-1189

    Article  Google Scholar 

  37. D.V. Shtansky, K. Nakai, and Y. Ohmori: Acta Mater., 1999, vol. 47, pp. 2619-32.

    Article  Google Scholar 

  38. Z.D. Li, G. Miyamoto, Z.G. Yang, T. Furuhara: Metall.Mater.Trans.A, 2011, vol. 42A, 1586-1596

    Article  Google Scholar 

Download references

Acknowledgments

The support from the National Science Foundation of China (Grants 51471094) is gratefully acknowledged. M. Enomoto acknowledges the support on the Foreign Experts Recruitment Program of China Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Enomoto.

Additional information

Manuscript submitted February 12, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z.N., **a, Y., Enomoto, M. et al. Effect of Alloying Element Partition in Pearlite on the Growth of Austenite in High-Carbon Low Alloy Steel. Metall Mater Trans A 47, 1019–1027 (2016). https://doi.org/10.1007/s11661-015-3272-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3272-y

Keywords

Navigation