Log in

Microstructure, Texture, and Orientation-Dependent Flow Behavior of Binary Ni-16Cr and Ni-16Mo Solid Solution Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This work describes microstructure, texture, and orientation-dependent flow behavior of Ni-16Cr and Ni-16Mo alloys in hot rolled and annealed condition. The high and low stacking fault energy values associated with Ni-16Cr and Ni-16Mo result in partial recrystallization after recovery and presence of twins in recrystallized grains, respectively. Both the alloys display two slopes in the true plastic stress–strain curves and follow Ludwigson relation, however the deformation mechanisms of both the alloys associated with two slopes are different. The low-strain regime of flow curves of the alloy Ni-16Cr is associated with uniform and finely spaced slip lines within the grains along with very small fraction of strain localization. On the other hand, a few slip lines appear to cross the grain boundaries in high-strain regime with a favorable angular deviation between adjacent grains along with large fractions of strain localization (2 to 5 deg low-angle grain boundary). On the other hand, the low-strain regime of the alloy Ni-16Mo is related to the presence of uniformly and finely spaced slip lines and small fractions of both the deformation twins as well as strain localization. The main features of high-strain regime of the alloy Ni-16Mo exhibit large volume fractions of deformation twins and strain localization along with few coarse penetrating slip lines across the grain boundaries. Sample orientation-dependent ductility of both the alloys has been explained based on dislocation storage capacity and dynamic recovery coefficient using Kock–Mecking–Estrin analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.R. Davis, ed.: ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys, ASM International, Materials Park, 2000.

  2. ASM Handbook: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, vol. 2, ASM International, Materials Park, 1992.

  3. T.D. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, eds.: Binary Alloy Phase Diagrams, ASM International, Metal Park, OH, 1990.

  4. A. Takeuchi, and A. Inoue: Mater. Trans., 2005, vol. 46, pp. 2817–2829.

    Article  Google Scholar 

  5. N.S. Stoloff in: C.T. Sims, N.S. Stoloff, W.C. Hagel (Eds.), Superalloys II, John Wiley and Sons, New York, 1987, pp. 61–96.

    Google Scholar 

  6. R.L. Fleischer: Acta Metall., 1963, vol. 11, pp. 203–209.

    Article  Google Scholar 

  7. L. Delehouzee, and A. Deruyttere: Acta. Mater., 1967, vol. 15, pp. 727–734.

    Article  Google Scholar 

  8. H.M. Tawancy, and L.M. Al-Hadhrami: J. Mater. Eng. Perform., 2012, vol. 21, pp. 1374–79.

    Article  Google Scholar 

  9. H.A. Roth, C.L. Davis, and R.C. Thomson: Metall. and Mater. Trans. A, 1997, vol. 28, pp. 1329–1335.

    Article  Google Scholar 

  10. Y. Mishima, S. Ochiai, N. Hamao, M. Yodogawa, and T. Suzuki: Trans. Jpn. Inst. Met., 1986, vol. 27, pp. 656–664.

    Article  Google Scholar 

  11. L.G. Schultz: J. Appl. Phys., 1949, vol. 20, pp. 1030–1033.

    Article  Google Scholar 

  12. K.K. Mehta, P. Mukhopadhyay, R.K. Mandal, and A.K. Singh: Metall. and Mater. Trans. A, 2014, vol. 45, pp. 3493–3504.

    Article  Google Scholar 

  13. F.J. Humphreys, and H. Hatherly: Recrystallization and related phenomena. Oxford: Elsevier, 2004.

    Google Scholar 

  14. K. Ankamma, D.V.V. Satyanarayana, G.C.M. Reddy, M. Komaraiah, and N.E. Prasad: Sadhana, 2011, vol. 36, pp. 223–249.

    Article  Google Scholar 

  15. K. Ankamma, A.K. Singh, K.S. Prasad, G.C.M. Reddy, M. Komaraiah, and N.E. Prasad: Int. J. Mater. Res., 2011, vol. 102, pp. 1274–1285.

    Article  Google Scholar 

  16. G.E. Dieter (1988) Mechanical Metallurgy. McGraw-Hill Book Co. Singapore.

    Google Scholar 

  17. S. Berbenni, V. Favier, and M. Berveiller: Int. J. Plast., 2007, vol. 23, pp. 114–42.

  18. K.V. Jata, A.K. Hopkins, and R.J. Rioja: Mater. Sci. Forum, 1996, vol. 217–222, pp. 647–652.

    Article  Google Scholar 

  19. S. Banumathy, R.K. Mandal, and A.K. Singh: Int. J. Mat. Res., 2011, vol. 102, pp. 208–217.

    Article  Google Scholar 

  20. Y.T. Wu, and C.H. Koo: Script. Met., 1997, vol. 38, pp. 267–271.

    Article  Google Scholar 

  21. D.C. Ludwigson: Metall. Trans., 1971, vol. 2, pp. 2825–2828.

    Article  Google Scholar 

  22. K.K. Mehta, P. Mukhopadhyay, R.K. Mandal, and A.K. Singh: Mater. Sci. Engg. A, 2014, vol. 613, pp. 71–81.

    Article  Google Scholar 

  23. Y. Guo, T.B. Britton, and A.J. Wilkinson: Acta Mater., 2014, vol. 76, pp. 1–12.

    Article  Google Scholar 

  24. C. Mondal, A.K. Singh, A.K. Mukhopadhyay, and K. Chattopadhyay: Mater. Sci. Engg. A, 2013, vol. 577, pp. 87–100.

    Article  Google Scholar 

  25. C. Keller, E. Hug, and G. Chateigner: Mater. Sci. Eng. A, 2009, vol. 500, pp. 207–215.

    Article  Google Scholar 

  26. N. Clement, D. Caillard, and J.L. Martin: Acta. Metall., 1984, vol. 32, pp. 961–975.

    Article  Google Scholar 

  27. U.F. Kocks: J. Eng. Mater. Tech. Trans. ASME, 1976, vol. 98, pp. 76–85.

    Article  Google Scholar 

  28. H. Mecking, and U.F. Kocks: Acta. Metall., 1981, vol. 29, pp. 1865–1875.

    Article  Google Scholar 

  29. Y. Estrin, and H. Mecking: Acta. Metall., 1984, vol. 32, pp. 57–70.

    Article  Google Scholar 

  30. U. Essmann, and H. Mughrabi: Philos. Mag. A, 1979, vol. 40, pp. 731–56.

    Article  Google Scholar 

  31. T. Narutani, and J.Takamura: Acta. Metall., 1991, vol. 39, pp. 2037–2049.

    Article  Google Scholar 

  32. J.E. Flinn, D.P. Field, G.E. Korth, T.M. Lillo, and J. Macheret: Acta. Mater., 2001, vol. 49, pp. 2065–2074.

    Article  Google Scholar 

  33. Yong-Hao Zhao, **ao-Zhou Liao, Sheng Cheng, En Ma, and Yuntian T. Zhu: Adv. Mater., 2006, vol. 18, pp. 2280–2283.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ministry of Defence, Government of India for financial support and Director, DMRL, Hyderabad for constant encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Singh.

Additional information

Manuscript submitted September 10, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, K.K., Mukhopadhyay, P., Mandal, R.K. et al. Microstructure, Texture, and Orientation-Dependent Flow Behavior of Binary Ni-16Cr and Ni-16Mo Solid Solution Alloys. Metall Mater Trans A 46, 3656–3669 (2015). https://doi.org/10.1007/s11661-015-2947-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2947-8

Keywords

Navigation