Log in

Regression Analysis of Thermal Conductivity Based on Measurements of Compacted Graphite Irons

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A model describing the thermal conductivity of compacted graphite iron (CGI) was created based on the microstructure analysis and thermal conductivity measurements of 76 compacted graphite samples. The thermal conductivity was measured using a laser flash apparatus for seven temperatures ranging between 35 °C and 600 °C. The model was created by solving a linear regression model taking into account the influence of carbon and silicon additions, nodularity, and fractions of ferrite and carbide constituents. Observations and the results from the model indicated a positive influence of the fraction of ferrite in the metal matrix on the thermal conductivity. Increasing the amount of carbon addition while kee** the CE value constant, i.e., at the same time reducing the silicon addition, had a positive effect on the thermal conductivity value. Nodularity is known to reduce the thermal conductivity and this was also confirmed. The fraction of carbides was low in the samples, making their influence slight. A comparison of the thermal conductivity values calculated from the model with measured values showed a good agreement, even on materials not used to solve the linear regression model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. D. Holmgren, R. Källbom, and I.L. Svensson: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 268–75.

    Article  CAS  ADS  Google Scholar 

  2. D. Holmgren, A. Diószegi, and I.L. Svensson: Int. J. Cast Met. Res., 2007, vol. 20 (1), pp. 30–40.

    Article  CAS  Google Scholar 

  3. D.M. Holmgren, A. Diószegi, and I.L. Svensson: Int. J. Cast Met. Res., 2006, vol. 19 (6), pp. 303–13.

    Article  CAS  Google Scholar 

  4. J. Helsing and G. Grimvall: J. Appl. Phys., 1991, vol. 70 (3), pp. 1198–1206.

    Article  CAS  ADS  Google Scholar 

  5. J. Helsing and A. Helte: J. Appl. Phys. 1991, vol. 69 (6), pp. 3583–88.

    Article  CAS  ADS  Google Scholar 

  6. D. Holmgren and M. Selin: 5th Int. Conf. on Solidification and Gravity, Miskolc-Lillafüred, Hungary, 2008, p. 6.

  7. D. Holmgren: Int. J. Cast Met. Res., 2005, vol. 18 (6), pp. 331–45.

    Article  CAS  Google Scholar 

  8. W. Guesser, T. Schroeder, and S. Dawson: Trans. Am. Foundry Society and the 105th Annual Castings Congr., Dallas, TX, American Foundry Society, Des Plains, IL, 2001, pp. 1–11.

  9. L. Elmquist: Doctoral Thesis, Chalmers University of Technology, Göteborg, Sweden, 2009.

  10. W.J. Parker, R.J. Jenkins, C.P. Butler, and G.L. Abbott: J. Appl. Phys., 1961, vol. 32 (9), pp. 1679–84.

    Article  CAS  ADS  Google Scholar 

  11. D. Holmgren, A. Diószegi, and I.L. Svensson: Tsinghua Sci. Technol., 2008, vol. 13 (2), pp. 80–85.

    Article  Google Scholar 

  12. R.W. Monroe and C.E. Bates: Transactions of the American Foundrymen’s Society, Proceedings of the 86th Annual Meeting, Chicago, IL, 1982, pp. 615–24.

  13. M. Selin, D. Holmgren, and I.L. Svensson: Int. J. Cast Met. Res., 2009, vol. 22 (1–4), pp. 283–85.

    Article  CAS  Google Scholar 

  14. W. Shenqing: Trans. Jpn. Foundrymen’s Soc., 1994, vol. 13, pp. 13–17.

    Google Scholar 

  15. P.C. Liu and C.R. Loper, Jr.: Scanning Electron Microscopy, 1980, pp. 407–18.

  16. S.V. Subramanian, D.A.R. Kay, and G.R. Purdy: Transactions of the American Foundrymen’s Society, Proceedings of the 86th Annual Meeting, Chicago, IL, 1982, pp. 589–603.

  17. M.C. Rukadikar and G.P. Reddy: J. Mater. Sci., 1986, vol. 21 (12), pp. 4403–10.

    Article  CAS  ADS  Google Scholar 

  18. P.G. Klemens and R.K. Williams: Int. Met. Rev., 1986, vol. 31 (5), pp. 197–215.

    CAS  Google Scholar 

  19. S. Dawson: VDI Berichte, VDI Conference on Materials in Powertrain, Dresden, Germany, October 28–29, 1999, No. 1472, pp. 85–105.

Download references

Acknowledgments

This article is a part of a larger project financed by the Swedish Knowledge Foundation together with the School of Engineering, Jönkö** University (Jönkö**, Sweden); Volvo Powertrain AB (Skövde, Sweden); and Daros Piston Rings AB (Mölnlycke, Sweden). All institutions and companies are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Selin.

Additional information

Manuscript submitted February 12, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selin, M., König, M. Regression Analysis of Thermal Conductivity Based on Measurements of Compacted Graphite Irons. Metall Mater Trans A 40, 3235–3244 (2009). https://doi.org/10.1007/s11661-009-0042-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0042-8

Keywords

Navigation