Log in

Dislocation simulation of brittle-ductile transition in ferritic steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Two-dimensional discrete dislocation simulations of the crack-tip plasticity of a macrocrack-micro-crack system representing the fracture behavior in ferritic steels are presented. The crack-tip plastic zones are represented as arrays of discrete dislocations emitted from crack-tip sources and equilibrated against the friction stress. The dislocation arrays modify the elastic field of the crack; the resulting field describes the elastoplastic crack field. The simulated crack system involves a microcrack in the plastic zone of the macrocrack (elastoplastic stress field). The effects of the crack-tip blunting of the macrocrack are included in the simulations; as dislocations are emitted, the microcrack is kept at a constant distance from the blunted tip of the macrocrack. The brittle-ductile transition (BDT) curve is obtained by simulating the fracture toughness at various temperatures. A consideration of the effects of blunting is found to be critical in predicting the sharp upturn of the BDT curve. The obtained results are compared with existing experimental data and are found to be in reasonable agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Orowan: Trans. Inst. Eng. Shipbuilders Scotland, 1945, vol. 89, p. 165.

    CAS  Google Scholar 

  2. C.J. McMahon, Jr. and M. Cohen: Acta Metall., 1965, vol. 13, p. 591.

    Article  CAS  Google Scholar 

  3. D.A. Curry and J.F. Knott: Met. Sci., 1979, vol. 13, p. 341.

    CAS  Google Scholar 

  4. P. Bowen and J.F. Knott: Metall. Trans. A, 1986, vol. 17A, p. 231.

    CAS  Google Scholar 

  5. M.K. Veistinen and V.K. Lindroos: Scripta Metall., 1984, vol. 18, p. 185.

    Article  CAS  Google Scholar 

  6. P. Bowen, S.G. Druce, and J.F. Knott: Acta Metall., 1986, vol. 34, p. 1121.

    Article  CAS  Google Scholar 

  7. P. Bowen, S.G. Druce, and J.F. Knott: Acta Metall., 1987, vol. 35, p. 1735.

    Article  CAS  Google Scholar 

  8. S.R. Ortner and C.A. Hippsley: Mater. Sci. Technol., 1996, vol. 12, p. 1035.

    CAS  Google Scholar 

  9. R.O. Ritchie, J.F. Knott, and J.R. Rice: J. Mech. Phys. Solids, 1973, vol. 21, p. 395.

    Article  CAS  Google Scholar 

  10. F.M. Beremin: Metall. Trans. A, 1983, vol. 14A, p. 2277.

    CAS  Google Scholar 

  11. K. Wallin, T. Saario, and K. Törrönen: Met. Sci., 1984, vol. 18, p. 13.

    Article  CAS  Google Scholar 

  12. D.E. McCabe, J.G. Merkle, and K. Wallin: in Fatigue and Fracture Mechanics: 30th Volume, ASTM STP 1360, P.C. Paris and K.L. Jerina, eds., ASTM, West Conshohocken, PA, 2000, p. 21.

    Google Scholar 

  13. G.R. Odette and M.Y. He: J. Nucl. Mater., 2000, vols. 283–287, p. 120.

    Article  Google Scholar 

  14. ASTM Standard Test Method E 1921-02, Annual Book of ASTM Standards, ASTM, West Conshohocken, PA, 2002, vol. 03.01.

    Google Scholar 

  15. M.E. Natishan and M.T. Kirk: in Fatigue and Fracture Mechanics: 30th Volume, ASTM STP 1360, P.C. Paris and K.L. Jerina, eds., ASTM, West Conshohocken, PA, 2000, p. 51.

    Google Scholar 

  16. P.B. Hirsch, S.G. Roberts, and J. Samuels: Proc. R. Soc. London A, 1989, vol. 421, p. 25.

    Article  CAS  Google Scholar 

  17. P.B. Hirsch and S.G. Roberts: Phil. Mag. A, 1991, vol. 64, p. 55.

    CAS  Google Scholar 

  18. P.B. Hirsch and S.G. Roberts: Phil. Trans. R. Soc. London A, 1997, vol. 355, p. 1991.

    Article  CAS  Google Scholar 

  19. S.G. Roberts, S.J. Noronha, A.J. Wilkinson, and P.B. Hirsch: Acta Mater., 2002, vol. 50, p. 1229.

    Article  CAS  Google Scholar 

  20. S. Wang and S. Lee: Mater. Sci. Eng., 1990, vol. A130, p. 1.

    Google Scholar 

  21. T-Y. Zhang and J.C.M. Li: Acta Metall. Mater., 1991, vol. 39, p. 2739.

    Article  CAS  Google Scholar 

  22. H. Saka, K. Nada, and T. Imura: Crystal Lattice Defects, 1973, vol. 4, p. 45.

    CAS  Google Scholar 

  23. V. Lakshmanan and J.C.M. Li: Mater. Sci. Eng., 1988, vol. A104, p. 95.

    Google Scholar 

  24. M. Creager and P.C. Paris: Int. J. Fract. Mech., 1967, vol. 3, p. 247.

    CAS  Google Scholar 

  25. S.J. Noronha and N.M. Ghoniem: unpublished research.

  26. M.X. Shi, Y. Huang, and H. Gao: Int. J. Plasticity, 2004, vol. 20, p. 1739.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the symposium “Computational Aspects of Mechanical Properties of Materials,” which occurred at the 2005 TMS Annual Meeting, February 13–17, 2005, in San Francisco, CA, under the auspices of the MPMD-Computational Materials Science & Engineering (Jt. ASM-MSCTS) Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noronha, S.J., Ghoniem, N.M. Dislocation simulation of brittle-ductile transition in ferritic steels. Metall Mater Trans A 37, 539–544 (2006). https://doi.org/10.1007/s11661-006-0025-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-0025-y

Keywords

Navigation