Log in

Composite Sophora Colon-Soluble Capsule Ameliorates DSS-Induced Ulcerative Colitis in Mice via Gut Microbiota-Derived Butyric Acid and NCR+ ILC3

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate the effects of composite Sophora colon-soluble Capsule (CSCC) on gut microbiota-mediated short-chain fatty acids (SCFAs) production and downstream group 3 innate lymphoid cells (ILC3s) of dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice model.

Methods

The main components of CSCC were analyzed by hybrid ultra-high-performance liquid chromatography ion mobility spectromety quadrupole time-of-flight mass spectrometry (UHPLC-IM-QTOF/MS). Twenty-four male BALB/c mice were randomly divided into 4 groups (n=6) by using a computer algorithm-generated random digital, including control, DSS model, mesalazine, and CSCC groups. A DSS-induced colitis mice model was established to determine the effects of CSCC by recording colonic weight, colonic length, index of colonic weight, and histological colonic score. The variations in ILC3s were assessed by immunofluorescence and flow cytometry. The results of gut microbiota and SCFAs were acquired by 16s rDNA and gas chromatography-mass spectrometry (GC-MS) analysis. The expression levels of NCR+ ILC3, CCR6+ Nkp46 (Lti) ILC3, and ILCreg-specific markers were detected by enzyme-linked immunosorbent assay, and real-time quantitative polymerase chain reaction and Western blot, respectively.

Results

The main components of CSCC were matrine, ammothamnine, Sophora flavescens neoalcohol J, and Sophora oxytol U. After 7 days of treatment, CSCC significantly alleviated colitis by promoting the reproduction of intestinal probiotics manifested as upregulation of the abundance of Bacteroidetes species and specifically the Bacteroidales_S24-7 genus (P<0.05). Among the SCFAs, the content of butyric acid increased the most after CSCC treatment. Meanwhile, compared with the model group, Lti ILC3s and its biomarkers were significantly downregulated and NCR+ ILC3s were significantly elevated in the CSCC group (P<0.01). Further experiments revealed that ILC3s were differentiated from Lti ILC3s to NCR+ ILC3s, resulting in interleukin-22 production which regulates gut epithelial barrier function.

Conclusion

CSCC may exert a therapeutic effect on UC by improving the gut microbiota, promoting metabolite butyric acid production, and managing the ratio between NCR+ ILC3s and Lti ILC3s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Magro F, Gionchetti P, Eliakim R, Ardizzone S, Armuzzi A, Barreiro-de Acosta M, et al. Third European Evidence-based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 1: definitions, diagnosis, extra-intestinal manifestations, pregnancy, cancer surveillance, surgery, and ileo-anal Pouch disorders. J Crohns Colitis 2017;11:649–670.

    Article  PubMed  Google Scholar 

  2. Eisenstein M. Ulcerative colitis: towards remission. Nature 2018;563:S33.

    Article  CAS  PubMed  Google Scholar 

  3. Rutgeerts P, Sandborn WJ, Feagan BG, Reinisch W, Olson A, Johanns J, et al. Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med 2005;353:2462–2476.

    Article  CAS  PubMed  Google Scholar 

  4. Magnusson MK, Strid H, Sapnara M, Lasson A, Bajor A, Ung KA, et al. Anti-TNF therapy response in patients with ulcerative colitis is associated with colonic antimicrobial peptide expression and microbiota composition. J Crohns Colitis 2016;10:943–952.

    Article  PubMed  Google Scholar 

  5. Ananthakrishnan AN. Epidemiology and risk factors for IBD. Nat Rev Gastroenterol Hepatol 2015;12:205–217.

    Article  PubMed  Google Scholar 

  6. Macia L, Tan J, Vieira AT, Leach K, Stanley D, Luong S, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun 2015;6:6734.

    Article  CAS  PubMed  Google Scholar 

  7. Imoto Y, Kato A, Takabayashi T, Sakashita M, Norton JE, Suh LA, et al. Short-chain fatty acids induce tissue plasminogen activator in airway epithelial cells via GPR41 and 43. Clin Exp Allergy Clin Immunol 2018;48:544–554.

    Article  CAS  Google Scholar 

  8. Takaki-Kuwahara A, Arinobu Y, Miyawaki K, Yamada H, Tsuzuki H, Irino K, et al. CCR6+ group 3 innate lymphoid cells accumulate in inflamed joints in rheumatoid arthritis and produce Th17 cytokines. Arthritis Res Ther 2019;21:198.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Saez de Guinoa J, Jimeno R, Farhadi N, Jervis PJ, Cox LR, Besra GS, et al. CD1d-mediated activation of group 3 innate lymphoid cells drives IL-22 production. EMBO Rep 2017;18:39–47.

    Article  CAS  PubMed  Google Scholar 

  10. Zhou Y, Zhi F. Lower level of bacteroides in the gut microbiota is associated with inflammatory bowel disease: a meta-analysis. Biomed Res Int 2016;2016:5828959.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yu W, Su X, Chen W, Tian X, Zhang K, Guo G, et al. Three types of gut bacteria collaborating to improve Kui Jie’an enema treat DSS-induced colitis in mice. Biomed Pharmacother 2019;113:108751.

    Article  PubMed  Google Scholar 

  12. Chun E, Lavoie S, Fonseca-Pereira D, Bae S, Michaud M, Hoveyda HR, et al. Metabolite-sensing receptor Ffar2 regulates colonic group 3 innate lymphoid cells and gut immunity. Immunity 2019;51:871–884.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ebbo M, Crinier A, Vely F, Vivier E. Innate lymphoid cells: major players in inflammatory diseases. Nat Rev Immunol 2017;17:665–678.

    Article  CAS  PubMed  Google Scholar 

  14. Kobayashi M, Mikami D, Kimura H, Kamiyama K, Morikawa Y, Yokoi S, et al. Short-chain fatty acids, GPR41 and GPR43 ligands, inhibit TNF-alpha-induced MCP-1 expression by modulating p38 and JNK signaling pathways in human renal cortical epithelial cells. Biochem Biophys Res Commun 2017;486:499–505.

    Article  CAS  PubMed  Google Scholar 

  15. Tong ZQ, Yang B, Chen BY, Zhao ML. A multi-center, randomized, single-blind, controlled clinical study on the efficacy of composite Sophora colon-soluble Capsules in treating ulcerative colitis. Chin J Integr Med 2010;16:486–492.

    Article  CAS  PubMed  Google Scholar 

  16. He X, Fang J, Huang L, Wang J, Huang X. Sophora flavescens Ait.: traditional usage, phytochemistry and pharmacology of an important traditional Chinese medicine. J Ethnopharmacol 2015;172:10–29.

    Article  CAS  PubMed  Google Scholar 

  17. Gong Y, Zha Q, Li L, Liu Y, Yang B, Liu L, et al. Efficacy and safety of Fufangkushen colon-coated capsule in the treatment of ulcerative colitis compared with mesalazine: a double-blinded and randomized study. J Ethnopharmacol 2012;141:592–598.

    Article  PubMed  Google Scholar 

  18. Ding Y, Chen M, Wang Q, Gao L, Feng Y, Wang S, et al. Integrating pharmacology and microbial network analysis with experimental validation to reveal the mechanism of composite Sophora colon-soluble Capsule against ulcerative colitis. Evid Based Complement Alternat Med 2020;2020:1–16.

    Article  Google Scholar 

  19. Sha T, Igaki K, Yamasaki M, Watanabe T, Tsuchimori N. Establishment and validation of a new semi-chronic dextran sulfate sodium-induced model of colitis in mice. Int Immunopharmacol 2013;15:23–29.

    Article  CAS  PubMed  Google Scholar 

  20. Ge W, Wang HY, Zhao HM, Liu XK, Zhong YB, Long J, et al. Effect of Sishen Pill on memory T cells from experimental colitis induced by dextran sulfate sodium. Front Pharmacol 2020;11:908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen F, Yin YT, Zhao HM, Wang HY, Zhong YB, Long J, et al. Sishen Pill treatment of DSS-induced colitis via regulating interaction with inflammatory dendritic cells and gut microbiota. Front Physiol 2020;11:801.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mahler M, Bristol IJ, Leiter EH, Workman AE, Birkenmeier EH, Elson CO, et al. Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis. Am J Physiol 1998;274:G544–G551.

    CAS  PubMed  Google Scholar 

  23. Zeng B, Shi S, Ashworth G, Dong C, Liu J, **ng F. ILC3 function as a double-edged sword in inflammatory bowel diseases. Cell Death Dis 2019;10:315.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cao SY, Ye SJ, Wang WW, Wang B, Zhang T, Pu YQ, et al. Progress in active compounds effective on ulcerative colitis from Chinese medicines. Chin J Nat Med (Chin) 2019;17:81–102.

    CAS  Google Scholar 

  25. Ordas I, Eckmann L, Talamini M, Baumgart DC, Sandborn WJ. Ulcerative colitis. Lancet 2012;380:1606–1619.

    Article  PubMed  Google Scholar 

  26. Lavelle A, Lennon G, Winter DC, O’Connell PR. Colonic biogeography in health and ulcerative colitis. Gut Microbes 2016;7:435–442.

    Article  PubMed  PubMed Central  Google Scholar 

  27. McIlroy J, Ianiro G, Mukhopadhya I, Hansen R, Hold GL. Review article: the gut microbiome in inflammatory bowel disease—avenues for microbial management. Aliment Pharmacol Ther 2018;47:26–42.

    Article  CAS  PubMed  Google Scholar 

  28. Ananthakrishnan AN, Bernstein CN, Iliopoulos D, Macpherson A, Neurath MF, Ali RAR, et al. Environmental triggers in IBD: a review of progress and evidence. Nat Rev Gastroenterol Hepatol 2018;15:39–49.

    Article  PubMed  Google Scholar 

  29. Sokol H, Leducq V, Aschard H, Pham HP, Jegou S, Landman C, et al. Fungal microbiota dysbiosis in IBD. Gut 2017;66:1039–1048.

    Article  CAS  PubMed  Google Scholar 

  30. Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 2018;23:716–724.

    Article  CAS  PubMed  Google Scholar 

  31. Lu YH, Cong LL. Study on the Chinese medical syndrome distribution of ulcerative colitis. Chin J Integr Tradit West Med (Chin) 2012;32:450–454.

    Google Scholar 

  32. Langhorst J, Wulfert H, Lauche R, Klose P, Cramer H, Dobos GJ, et al. Systematic review of complementary and alternative medicine treatments in inflammatory bowel diseases. J Crohns Colitis 2015;9:86–106.

    Article  CAS  PubMed  Google Scholar 

  33. Shen Z, Zhou Q, Ni Y, He W, Shen H, Zhu L. Traditional Chinese medicine for mild-to-moderate ulcerative colitis: protocol for a network meta-analysis of randomized controlled trials. Medicine (Baltimore) 2019;98:e16881.

    Article  PubMed  Google Scholar 

  34. Sugimoto S, Naganuma M, Kiyohara H, Arai M, Ono K, Mori K, et al. Clinical efficacy and safety of oral Qing-Dai in patients with ulcerative colitis: a single-center open-label prospective study. Digestion 2016;93:193–201.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang C, Jiang M, Lu A. Considerations of traditional Chinese medicine as adjunct therapy in the management of ulcerative colitis. Clin Rev Allergy Immunol 2013;44:274–283.

    Article  PubMed  Google Scholar 

  36. Tong ZQ, Yang B, Tong XY. A multi-center randomized double-blinded, placebo-controlled clinical study on efficacy of composite Sophora colon-soluble Capsules in treating ulcerative colitis of internal dampness-heat accumulation syndrome type. Chin J Integr Tradit West Med (Chin) 2011;31:172–176.

    Google Scholar 

  37. Aly SH, Elissawy AM, Eldahshan OA, Elshanawany MA, Efferth T, Singab ANB. The pharmacology of the genus Sophora (Fabaceae): an updated review. Phytomedicine 2019;64:153070.

    Article  CAS  PubMed  Google Scholar 

  38. Chen M, Ding Y, Tong Z. Efficacy and safety of Sophora flavescens (Kushen) based traditional Chinese medicine in the treatment of ulcerative colitis: clinical evidence and potential mechanisms. Front Pharmacol 2020;11:603476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fransen F, van Beek AA, Borghuis T, Meijer B, Hugenholtz F, van der Gaast-de Jongh C, et al. The impact of gut microbiota on gender-specific differences in immunity. Front Immunol 2017;8:754.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liu F, Li Z, Wang X, Xue C, Tang Q, Li RW. Microbial co-occurrence patterns and keystone species in the gut microbial community of mice in response to stress and Chondroitin sulfate Disaccharide. Int J Mol Sci 2019;20:2130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Machiels K, Sabino J, Vandermosten L, Joossens M, Arijs I, de Bruyn M, et al. Specific members of the predominant gut microbiota predict pouchitis following colectomy and IPAA in UC. Gut 2017;66:79–88.

    Article  PubMed  Google Scholar 

  42. Maerz JK, Trostel C, Lange A, Parusel R, Michaelis L, Schafer A, et al. Bacterial immunogenicity is critical for the induction of regulatory B cells in suppressing inflammatory immune responses. Front Immunol 2019;10:3093.

    Article  CAS  PubMed  Google Scholar 

  43. Yang W, Yu T, Huang X, Bilotta AJ, Xu L, Lu Y, et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat Commun 2020;11:4457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liang YN, Yu JG, Zhang DB, Zhang Z, Ren LL, Li LH, et al. Indigo Naturalis ameliorates dextran sulfate sodium-induced colitis in mice by modulating the intestinal microbiota community. Molecules 2019;24:4086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Duranti S, Gaiani F, Mancabelli L, Milani C, Grandi A, Bolchi A, et al. Elucidating the gut microbiome of ulcerative colitis: bifidobacteria as novel microbial biomarkers. FEMS Microbiol Ecol 2016;92:fiw191.

    Article  PubMed  Google Scholar 

  46. Ormerod KL, Wood DL, Lachner N, Gellatly SL, Daly JN, Parsons JD, et al. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome 2016;4:36.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tan JK, McKenzie C, Marino E, Macia L, Mackay CR. Metabolite-sensing G protein-coupled receptors-facilitators of diet-related immune regulation. Annu Rev Immunol 2017;35:371–402.

    Article  CAS  PubMed  Google Scholar 

  48. Liu B, Piao X, Niu W, Zhang Q, Ma C, Wu T, et al. Kuijieyuan Decoction improved intestinal barrier injury of ulcerative colitis by affecting TLR4-dependent PI3K/AKT/NF-kappaB oxidative and inflammatory signaling and gut microbiota. Front Pharmacol 2020;11:1036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ratsimandresy RA, Indramohan M, Dorfleutner A, Stehlik C. The AIM2 inflammasome is a central regulator of intestinal homeostasis through the IL-18/IL-22/STAT3 pathway. Cell Mol Immunol 2017;14:127–142.

    Article  CAS  PubMed  Google Scholar 

  50. Martinez-Lopez M, Iborra S, Conde-Garrosa R, Mastrangelo A, Danne C, Mann ER, et al. Microbiota sensing by mincle-Syk axis in dendritic cells regulates interleukin-17 and -22 production and promotes intestinal barrier integrity. Immunity 2019;50:446–461.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Warner K, Ohashi PS. ILC regulation of T cell responses in inflammatory diseases and cancer. Semin Immunol 2019;41:101284.

    Article  CAS  PubMed  Google Scholar 

  52. Li J, Shi W, Sun H, Ji Y, Chen Y, Guo X, et al. Activation of DR3 signaling causes loss of ILC3s and exacerbates intestinal inflammation. Nat Commun 2019;10:3371.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chu C, Moriyama S, Li Z, Zhou L, Flamar AL, Klose CSN, et al. Anti-microbial functions of group 3 innate lymphoid cells in gut-associated lymphoid tissues are regulated by G-protein-coupled receptor 183. Cell Rep 2018;23:3750–3758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Natsume C, Aoki N, Aoyama T, Senda K, Matsui M, Ikegami A, et al. Fucoxanthin ameliorates atopic dermatitis symptoms by regulating keratinocytes and regulatory innate lymphoid cells. Int J Mol Sci 2020;21:2180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang S, **a P, Chen Y, Qu Y, **ong Z, Ye B, et al. Regulatory innate lymphoid cells control innate intestinal inflammation. Cell 2017;171:201–216.e18.

    Article  CAS  PubMed  Google Scholar 

  56. Shao L, Pan S, Zhang QP, Jamal M, Chen LH, Yin Q, et al. An essential role of innate lymphoid cells in the pathophysiology of graft-vs.-host disease. Front Immunol 2019;10:1233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Derrien M, Belzer C, de Vos WM. Akkermansia muciniphila and its role in regulating host functions. Microb Pathog 2017;106:171–181.

    Article  PubMed  Google Scholar 

  58. Lopez-Siles M, Enrich-Capo N, Aldeguer X, Sabat-Mir M, Duncan SH, Garcia-Gil LJ, et al. Alterations in the abundance and co-occurrence of Akkermansia muciniphila and Faecalibacterium prausnitzii in the colonic mucosa of inflammatory bowel disease subjects. Front Cell Infect Microbiol 2018;8:281.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Castellanos JG, Longman RS. Innate lymphoid cells link gut microbes with mucosal T cell immunity. Gut Microbes 2019;11:1–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was done by Tong ZQ and Feng Y; Chen MJ and Wang SD contributed in experiments conduction, formal analysis, and writing the original draft; Chen MJ, Feng Y and Tong ZQ reviewed and edited the manuscript. All authors confirmed and approved the final manuscript for publication.

Corresponding author

Correspondence to Zhan-qi Tong.

Ethics declarations

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Supported by the National Natural Science Foundation of China (No. 81673965) and Bei**g Natural Science Foundation (No. 7224362)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Mj., Feng, Y., Gao, L. et al. Composite Sophora Colon-Soluble Capsule Ameliorates DSS-Induced Ulcerative Colitis in Mice via Gut Microbiota-Derived Butyric Acid and NCR+ ILC3. Chin. J. Integr. Med. 29, 424–433 (2023). https://doi.org/10.1007/s11655-022-3317-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-022-3317-1

Keywords

Navigation