Log in

Polycondensation reaction and its mechanism during lignocellulosic liquefaction by an acid catalyst: a review

  • Review
  • Published:
Forestry Studies in China

Abstract

The increase in the residue content resulting from polycondensation would be adverse to the utilization of lignocellulose and to the quality of products obtained from liquefied lignocellulosic material. The yield of the residue formed from liquefaction and the mechanism of polycondensation were reported mainly by Lin, Yamada and Kobayashi. The major products of cellulosic liquefaction are levulinic acid and hydroxymethylfurfural (HMF) derivatives under polyhydric alcohols and phenolated compounds under phenols. The cleavage of the β-O-4 bonds is the major reaction pathway of lignin liquefaction under various liquefying reagents regardless of whether they contain acid catalysts or not. The break up compounds by decomposition are polymerized to substances with high molecular weight by polycondensation in lignocellulosic liquefaction. The molecular weight of condensed residues increases almost linearly as a function of liquefaction time at the later stage of lignocellulosic liquefaction. The longer the time required, the greater the content of new residue generated by polycondensation during the entire process of liquefaction. We conclude that the condensed residues may stem from the interaction of degraded lignin and cellulose components in wood or from the products of two major components reacting with liquefying reagents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acemioglu B, Alma M H. 2002. Kinetics of wood phenolysis in the presence of HCl as catalyst. J Appl Polym Sci, 85(5):1098–1103

    Article  CAS  Google Scholar 

  • Ahmadzadeh A, Zakaria S. 2009. Preparation of novolak resin by liquefaction of oil palm empty fruit bunches (EFB) and characterization of EFB residue. Polym Plast Technol Eng, 48(1): 10–16

    Article  CAS  Google Scholar 

  • Alma M H, Acemioglu B. 2004. A kinetic study of sulfuric acid-catalyzed liquefaction of wood into phenol. Chem Eng Commun, 191(7): 968–980

    Article  CAS  Google Scholar 

  • Alma M H, Yoshioka M, Yao Y, Shiraishi N. 1995a. Some characterizations of hydrochloric acid catalyzed phenolated wood-based materials. Mokuzai Gakkaishi, 41(8): 741–748

    CAS  Google Scholar 

  • Alma M H, Yoshioka M, Yao Y, Shiraishi N. 1995b. Preparation of oxalic acid-catalyzed resinified phenloated wood and its characterization. Mokuzai Gakkaishi, 41(12): 1122–1131

    CAS  Google Scholar 

  • Alma M H, Yoshioka M, Yao Y, Shiraishi N. 1998. Preparation of sulfuric acid-catalyzed phenolated wood resin. Wood Sci Technol, 32(4): 297–308

    Article  CAS  Google Scholar 

  • Basaran Y, Denizli A, Sakintuna B, Taralp A, Yürüm Y. 2003. Bio-liquefaction/solubilization of low-rank Turkish lignites and characterization of the products. Energ Fuel, 17(4): 1068–1074

    Article  CAS  Google Scholar 

  • Chen F G, Lu Z M. 2009. Liquefaction of wheat straw and preparation of rigid polyurethane foam from the liquefaction products. J Appl Polym Sci, 111(1): 508–516

    Article  CAS  Google Scholar 

  • Demirbas A. 2000. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energ Convers Manage, 41(6): 633–646

    Article  CAS  Google Scholar 

  • Demirbas A. 2008. Conversion of corn stover to chemicals and fuels. Energ Sources Part A, 30(9): 788–796

    Article  CAS  Google Scholar 

  • Demirbas M F, Balat M. 2007. Biomass pyrolysis for liquid fuels and chemicals: a review. J Sci Ind Res, 66(10): 797–804

    CAS  Google Scholar 

  • Deng H B, Lin L, Sun Y, Peng H, Pan C S, He B H, Ouyang P K, Liu S J. 2008. Lignin from formic acid hydrolysis of wheat straw. J Biobased Mater Bio, 2(2): 148–155

    Article  Google Scholar 

  • Elliott D C. 2007. Historical developments in hydroprocessing bio-oils. Energ Fuel, 21(3): 1792–1815

    Article  CAS  Google Scholar 

  • Gao G H, Huang J T. 2008. Separation of liquefied product of Salix psammophila by column chromatography and structure analysis of its components. Forest Stud China, 10(4): 274–279

    Article  CAS  Google Scholar 

  • Hassan E M, Shukry N. 2008. Polyhydric alcohol liquefaction of some lignocellulosic agricultural residues. Ind Crops Prod, 27(1): 33–38

    Article  CAS  Google Scholar 

  • Houtman C J, Atalla H. 1995. Cellulose-lignin interactions. Plant Physiol, 107: 977–984

    CAS  PubMed  Google Scholar 

  • Inoue S, Noguchi M, Hanaoka T, Minowa T. 2004. Organic compounds formed by thermochemical degradation of glucose-glycine melanoidins using hot compressed water. J Chem Eng Japan, 37(7): 915–919

    Article  CAS  Google Scholar 

  • Jasiukaitytë E, Kunaver M, Strlič M. 2009. Cellulose liquefaction in acidified ethylene glycol. Cellulose, 16(3): 393–405

    Article  Google Scholar 

  • Kleinert M, Barth T. 2008. Phenols from lignin. Chem Eng Technol, 31(5): 736–745

    Article  CAS  Google Scholar 

  • Kobayashi M, Asano T, Kajiyama M, Tomita B. 2004. Analysis on residue formation during wood liquefaction with polyhydric alcohol. J Wood Sci, 50(5): 407–414

    Article  CAS  Google Scholar 

  • Kurimoto Y, Doi S, Tamura Y. 1999. Species effects on wood-liquefaction in polyhydric alcohols. Holzforschung, 53(6): 617–622

    Article  CAS  Google Scholar 

  • Kurimoto Y, Takeda M, Koizumi A, Yamauchi S, Doi S, Tamura Y. 2000. Mechanical properties of polyurethane films prepared from liquefied wood with polymeric MDI. Bioresour Technol, 74(2): 151–157

    Article  CAS  Google Scholar 

  • Lee S H, Teramoto Y, Shiraishi N. 2002. Resol-type phenolic resin from liquefied phenolated wood and its application to phenolic foam. J Appl Polym Sci, 84(3): 468–472

    Article  CAS  Google Scholar 

  • Lee S H, Ohkita T. 2004. Ring-opening polymerization of cyclic esters onto liquefied biomass. J Polym Environ, 12(4): 203–210

    Article  CAS  Google Scholar 

  • Lee S H, Wang S Q. 2005. Effect of water on wood liquefaction and the properties of phenolated wood. Holzforschung, 59(6): 628–634

    Article  CAS  Google Scholar 

  • Lee W J, Lin M S. 2008. Preparation and application of polyurethane adhesives made from polyhydric alcohol liquefied Taiwan acacia and China fir. J Appl Polym Sci, 109(1): 23–31

    Article  CAS  Google Scholar 

  • Lin L Z, Yao Y G, Yoshioka M, Shiraishi N. 1994. Liquefaction of wood in the presence of phenol using phosphoric acid as a catalyst and the flow properties of the liquefied wood. J Appl Polym Sci, 52(11): 1629–1636

    Article  CAS  Google Scholar 

  • Lin L Z, Yao Y G, Yoshioka M, Shiraishi N. 1997a. Liquefaction mechanism of lignin in the presence of phenol at elevated temperature without catalysts: studies on β-O-4 lignin model compound. 1. Structural characterization of the reaction products. Holzforschung, 51(4): 316–324

    Article  CAS  Google Scholar 

  • Lin L Z, Yao Y G, Yoshioka M, Shiraishi N. 1997b. Liquefaction mechanism of lignin in the presence of phenol at elevated temperature without catalysts: studies on β-O-4 lignin model compound. 2. Reaction pathway. Holzforschung, 51(4): 325–332

    Article  CAS  Google Scholar 

  • Lin L Z, Yao Y G, Yoshioka M, Shiraishi N. 1997c. Liquefaction mechanism of lignin in the presence of phenol at elevated temperature without catalysts: studies on β-O-4 lignin model compound. 3. Multi-condensation. Holzforschung, 51(4): 333–337

    Article  CAS  Google Scholar 

  • Lin L Z, Yao Y G, Shiraishi N. 2001a. Liquefaction mechanism of β-O-4 lignin model compound in the presence of phenol under acid catalysis. Part 1. Identification of the reaction products. Holzforschung, 55(6): 617–624

    Article  CAS  Google Scholar 

  • Lin L Z, Yao Y G, Shiraishi N. 2001b. Liquefaction mechanism of β-O-4 lignin model compound in the presence of phenol under acid catalysis. Part 2. Reaction behavior and pathways. Holzforschung, 55(6): 625–630

    Article  CAS  Google Scholar 

  • Lin L Z, Yao Y G, Yoshioka M, Shiraishi N. 2004. Liquefaction mechanism of cellulose in the presence of phenol under acid catalysis. Carbohydr Polym, 57(2): 123–129

    Article  CAS  Google Scholar 

  • Liu Z A, Zhang F S. 2008. Effects of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks. Energ Convers Manage, 49(12): 3498–3504

    Article  CAS  Google Scholar 

  • Lu F C, Ralph J. 1997. DFRC method for lignin analysis. 1. New method for β-aryl ether cleavage: lignin model studies. J Agric Food Chem, 45(12): 4655–4660

    Article  CAS  Google Scholar 

  • Ma X J, Zhao G J. 2008. Structure and performance of fibers prepared from liquefied wood in phenol. Fibers Polym, 9(4): 405–409

    Article  CAS  Google Scholar 

  • Mun S P, Gilmour I A, Jordan P J. 2006. Effect of organic sulfonic acids as catalysts during phenol liquefaction of Pinus radiata Bark. J Ind Eng Chem, 12(5): 720–726

    CAS  Google Scholar 

  • Mun S P, Hassan E M. 2004. Liquefaction of lignocellulosic biomass with mixtures of ethanol and small amounts of phenol in the presence of methanesulfonic acid catalyst. J Ind Eng Chem, 10(5): 722–727

    CAS  Google Scholar 

  • Nasar M, Emam A, Sultan M, Abdel Hakim A A. 2010. Optimization and characterization of sugar-cane bagasse liquefaction process. Indian J Sci Technol, 3(2): 207–212

    CAS  Google Scholar 

  • Pan H, Shupe T F, Hse C Y. 2007. Characterization of liquefied wood residues from different liquefaction conditions. J Appl Polym Sci, 105(6): 3739–3746

    Article  CAS  Google Scholar 

  • Pan H, Shupe T F, Hse C Y. 2008. Synthesis and cure kinetics of liquefied wood/phenol/formaldehyde resins. J Appl Polym Sci, 108(3): 1837–1844

    Article  CAS  Google Scholar 

  • Pu S J, Shiraishi N. 1993. Liquefaction of wood without a catalyst. I. Time course of wood liquefaction with phenols and effects of wood/phenol ratios. Mokuzai Gakkaishi, 39(4): 446–452

    CAS  Google Scholar 

  • Rezzoug S A, Capart R. 2003. Assessment of wood liquefaction in acidified ethylene glycol using experimental design methodology. Energ Convers Manage, 44(5): 781–792

    Article  CAS  Google Scholar 

  • Schwanninger M, Rodrigues J C, Pereira H, Hinterstoisser B. 2004. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc, 36(1): 23–40

    Article  CAS  Google Scholar 

  • Soria A J, McDonald A G, Shook S R. 2008. Wood solubilization and depolymerization using supercritical methanol. Part 1: Process optimization and analysis of methanol insoluble components (bio-char). Holzforschung, 62(4): 402–408

    Article  CAS  Google Scholar 

  • Vázquez G, Antorrena G, González J, Freire S. 1997. FTIR, 1H and 13C NMR characterization of acetosolv-solubilized pine and eucalyptus lignins. Holzforschung, 51(2): 158–166

    Article  Google Scholar 

  • Wang H, Chen H Z. 2007. A novel method of utilizing the biomass resource: Rapid liquefaction of wheat straw and preparation of biodegradable polyurethane foam (PUF). J Chin Inst Chem Eng, 38(2): 95–102

    Article  Google Scholar 

  • Wei Y P, Cheng F, Li H P, Yu J G. 2004. Synthesis and properties of polyurethane resins based on liquefied wood. J Appl Polym Sci, 92(1): 351–356

    Article  CAS  Google Scholar 

  • Wei Y P, Cheng F, Li H P, Yu J G. 2005. Thermal properties and micromorphology of polyurethane resins based on liquefied benzylated wood. J Sci Ind Res, 64(6): 435–439

    CAS  Google Scholar 

  • Yamada T, Aratani M, Kubo S, Ono H. 2007. Chemical analysis of the product in acid-catalyzed solvolysis of cellulose using polyethylene glycol and ethylene carbonate. J Wood Sci, 53(6): 487–493

    Article  CAS  Google Scholar 

  • Yamada T, Hu Y, Ono H. 2001. Condensation reaction of degraded lignocellulose during wood liquefaction in the presence of polyhydric alcohols. J Adhesion Soc Japan, 37(12): 471–478

    CAS  Google Scholar 

  • Yamada T, Ono H. 2001. Characterization of the products resulting from ethylene glycol liquefaction of cellulose. J Wood Sci, 47(6): 458–464

    Article  CAS  Google Scholar 

  • Yan Y B, Pang H, Yang X X, Zhang R L, Liao B. 2008. Preparation and characterization of water-blown polyurethane foams from liquefied cornstalk polyol. J Appl Polym Sci, 110(2): 1099–1111

    Article  CAS  Google Scholar 

  • Zhang Q H, Zhao G J, Jie S J. 2005. Liquefaction and product identification of main chemical compositions of wood in phenol. Forest Stud China, 7(2): 31–37

    Article  Google Scholar 

  • Zhang Q H, Zhao G J, Chen J P. 2006a. Effects of inorganic acid catalysts on liquefaction of wood in phenol. Front Forest China, 1(2): 214–218

    Article  CAS  Google Scholar 

  • Zhang Y C, Ikeda A, Hori N, Takemura A, Ono H, Yamada T. 2006b. Characterization of liquefied product from cellulose with phenol in the presence of sulfuric acid. Bioresour Technol, 97(2): 313–321

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Zhou Y J, Liu D H, Petrus L. 2007. Qualitative analysis of products formed during the acid catalyzed liquefaction of bagasse in ethylene glycol. Bioresour Technol, 98(7): 1454–1459

    Article  CAS  PubMed  Google Scholar 

  • Zou X W, Yang Z, Qin T F. 2009. FTIR analysis of products derived from wood liquefaction with 1-octanol. Spectrosc Spectral Anal, 29(6): 1545–1548 (in Chinese with English abstract)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-jie Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, M., Zhao, Gj. & Alma, M.H. Polycondensation reaction and its mechanism during lignocellulosic liquefaction by an acid catalyst: a review. For. Stud. China 13, 71–79 (2011). https://doi.org/10.1007/s11632-011-0109-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11632-011-0109-7

Key words

Navigation