Log in

Somatic embryogenesis and histological analysis from zygotic embryos in Vitis vinifera L. ‘Moldova’

  • Research Article
  • Published:
Forestry Studies in China

Abstract

We examined the somatic embryogenesis from and histological studies of zygotic embryos of seeds in European Grape ‘Moldova’ (Vitis vinifera L. ‘Moldova’). Primary calli were initiated on Nitsch and Nitsch (NN) medium supplemented with 1.0 mg·L−1 2,4-D and 0.5 mg·L−1 6-BA. Embryogenic calli were produced upon transfer to a NN medium with 0.5 mg·L−1 6-BA and 2 mg·L−1 NAA and somatic embryos were obtained on a half strength MS medium without plant growth regulators. During the somatic embryo germination, an addition of 1.0 mg·L−1 6-BA in the medium could accelerate somatic embryos to develop into normal plants and increase the conversion rate from 0 to 43.3%. Histological studies of embryogenic calli and somatic embryos demonstrated dynamic changes of proteins and starch grains. The developmental processes of somatic embryos were similar to those of zygotic embryos, including typical epiderma, cotyledon primordium and vascular tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ben A A, Cobanov P, Boonrod K, Krczal G, Bouzid S, Ghorbel A, Reustle G M. 2007. Efficient procedure for grapevine embryogenic suspension establishment and plant regeneration: role of conditioned medium for cell proliferation. Plant Cell Rep, 26(9): 1439–1447

    Article  CAS  Google Scholar 

  • Carimi F, Barizza E, Gardiman M, Schiavo F L. 2005. Somatic embryogenesis from stigmas and styles of grapevine. In Vitro Cell Dev-Pl, 41(3): 249–252

    Article  CAS  Google Scholar 

  • Das D, Reddy M, Upadhyaya K, Sopory S. 2002. An efficient leaf-disc culture method for the regeneration via somatic embryogenesis and transformation of grape (Vitis vinifera L.). Plant Cell Rep, 20(11): 999–1005

    Article  CAS  Google Scholar 

  • Faure O. 1990. Somatic embryos of Vitis rupestris and zygotic embryos of Vitis species: morphology, histology, histochemistry and development. Can J Bot, 68(3): 2305–2315

    Google Scholar 

  • Faure O, Aarrouf J, Nougarede A. 1996. Ontogenesis, differentiation and precocious germination in anther-derived somatic embryos of grapevine (Vitis vinifera L.): Embryonic organogenesis. Ann Bot, 78(1): 29–37

    Article  Google Scholar 

  • Franks T, Gang H D, Thomas M. 1998. Regeneration of transgenic shape Vitis vinifera L. Sultana plants: genotypic and phenotypic analysis. Mol Breed, 4(4): 321–333

    Article  CAS  Google Scholar 

  • Gambino G, Bondaz J, Gribaudo I. 2006. Detection and elimination of viruses in callus, somatic embryos and regenerated plantlets of grapevine. Eur J Plant Pathol, 114(4): 397–404

    Article  Google Scholar 

  • Gambino G, Ruffa P, Vallania R, Gribaudo I. 2007. Somatic embryogenesis from whole flowers, anthers and ovaries of grapevine (Vitis spp.). Plant Cell Tiss Organ Cult, 90(1): 79–83

    Article  CAS  Google Scholar 

  • Goebel-Tourand I, Mauro M C, Sossountzov L, Miginiac E, Deloire A. 1993. Arrest of somatic embryo development in grapevine: histological characterization and the effect of ABA, BAP and zeatin in stimulating plantlet development. Plant Cell Tiss Organ Cult, 33(1): 91–103

    Article  CAS  Google Scholar 

  • Gray D J. 1987. Quiescence in monocotyledonous and dicotyledonous somatic embryos induced by dehydration. HortScience, 22(5): 810–814

    Google Scholar 

  • Gray D J. 1989. Effects of dehydration and exogenous growth regulators on dormancy, quiescence and germination of grape somatic embryos. In Vitro Cell Dev-Pl, 25(12): 1173–1178

    Article  Google Scholar 

  • Gray D J. 1992. Somatic embryogenesis and plant regeneration from immature zygotic embryos of muscadine grape (Vitis rotundifolia) cultivars. Am J Bot, 79(5): 542–546

    Article  Google Scholar 

  • Gray D J. 1995. Somatic embryogenesis in grape. In: Jain S, Gupta P, Newton R (eds.). Somatic Embryogenesis in Woody Plants, Vol. 2. Dordrecht: Kluwer, 191–217

    Google Scholar 

  • Gray D J, Compton M E, Harrel R C, Cantliffe D J, Bajaj Y P. 1995. Somatic embryogenesis and the technology of synthetic seed. In: Bajaj Y P S (ed.). Biotechnology in Agriculture and Forestry (Alemania). Berlin: Spring-Verlag, 126–151

    Google Scholar 

  • Gray D J, Mortensen J A. 1987. Initiation and maintenance of long term somatic embryogenesis from anthers and ovaries of Vitis longii ‘Microsperma’. Plant Cell Tiss Organ Cult, 9(1): 73–80

    Article  Google Scholar 

  • Iocco P, Franks T, Thomas M R. 2001. Genetic transformation of major wine grape cultivars of Vitis vinifera L. Transgen Res, 10(2): 105–112

    Article  CAS  Google Scholar 

  • Jayasankar S, Bondada B, Li Z, Gray D. 2002. A unique morphotype of grapevine somatic embryos exhibits accelerated germination and early plant development. Plant Cell Rep, 20(10): 907–911

    Article  CAS  Google Scholar 

  • Jayasankar S, Gray D J, Litz R E. 1999. High-efficiency somatic embryogenesis and plant regeneration from suspension cultures of grapevine. Plant Cell Rep, 18(7): 533–537

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant, 15(3): 473–497

    Article  CAS  Google Scholar 

  • Nitsch J P, Nitsch C. 1969. Haploid plants from pollen grains. Science, 163(3862): 85–87

    Article  PubMed  Google Scholar 

  • Perl A, Saad S, Sahar N, Holland D. 1995. Establishment of long-term embryogenic cultures of seedless Vitis vinifera cultivars—a synergistic effect of auxins and the role of abscisic acid. Plant Sci, 104(2): 193–200

    Article  CAS  Google Scholar 

  • Pinto-Sintra A L. 2007. Establishment of embryogenic cultures and plant regeneration in the Portuguese cultivar ‘Touriga Nacional’ of Vitis vinifera L. Plant Cell Tiss Organ Cult, 88(3): 253–265

    Article  Google Scholar 

  • Rajasekaran K, Vine J, Mullins M G. 1982. Dormancy in somatic embryos and seeds of Vitis: changes in endogenous abscisic acid during embryogeny and germination. Planta, 154(2): 139–144

    Article  CAS  Google Scholar 

  • Rodriguez A P, Wetzstein H Y. 1998. A morphological and histological comparison of the initiation and development of pecan (Carya illinoinensis) somatic embryogenic cultures induced with naphthaleneacetic acid or 2,4-dichlorophenoxyacetic acid. Protoplasma, 204(1): 71–83

    Article  Google Scholar 

  • Sass J E. 1958. Botanical Microtechnique. Ames: Iowa State University Press

    Google Scholar 

  • Takeno K, Koshioka M, Pharis R P, Rajasekaran K, Mullins M G. 1983. Endogenous gibberellin-like substances in somatic embryos of grape (Vitis vinifera×Vitis rupestris) in relation to embryogenesis and the chilling requirement for subsequent development of mature embryos. Plant Physiol, 73(3): 803–808

    Article  PubMed  CAS  Google Scholar 

  • Vilaplana M, Mullins M G. 1989. Regeneration of grapevines (Vitis spp.) in vitro: formation of adventitious buds on hypocotyls and cotyledons of somatic embryos. J Plant Physiol, 134(4): 413–419

    CAS  Google Scholar 

  • Zhao S, Guo Z, Ma A. 2006. A late-maturing grape cultivar with characteristic of strong resistance to diseases — Moldva. China Fruits, 33(3): 60–61 (in Chinese with English abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-lan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Li, Fl., Du, Jc. et al. Somatic embryogenesis and histological analysis from zygotic embryos in Vitis vinifera L. ‘Moldova’. For. Stud. China 10, 253–258 (2008). https://doi.org/10.1007/s11632-008-0040-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11632-008-0040-8

Key words

Navigation