Log in

Geochemistry of island arc assemblage in the Eastern Desert of Egypt and the role of Pan-African magmatism in crustal growth of the Arabian–Nubian Shield: A review

  • Review Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

Neoproterozoic island arc assemblage of the Arabian–Nubian Shield (ANS) in the Eastern Desert (ED) of Egypt comprises juvenile suites of metavolcanics (MV), large amounts of meta-sedimentary rocks (MS), and voluminous metagabbros-diorites (MGD) and syn-tectonic intrusions of older granitoids (OG). We report here the updates of these four rock units in terms of classification, distribution, chemical characteristics, geodynamic evolution, metamorphism, and ages. In addition, we discuss these integrated data to elucidate a reasonable and reliable model for crustal evolution in the ANS. The main features of these rock units indicate their relation to each other and the geodynamic environment dominated by early immature oceanic island arcs to primitive continental arcs. Integrated information of the island arc metavolcanic and plutonic rocks (gabbros, diorites, tonalites, and granodiorites) furnish evidence of the genetic relationships. These include proximity and a coeval nature in the field; all protolith magmas are subalkaline in nature following calc-alkaline series with minor tholeiitic affinities; common geochemical signature of the arc rocks and subduction-related magmatism; their similar enrichment in LREEs; and similar major element compositions with mafic melts derived from metasomatized mantle wedge. The volcano-sedimentary and the OG rocks underwent multiphase deformation events whereas the MGD complexes deformed slightly. Based on the magmatic, sedimentological, and metamorphic evolutions constrained by geochronological data as well as the progressive evolutionary trend from extensional to compressional regimes, a possible gradual decrease in the subducted slab dip angle is the most influential in any geodynamic model for arc assemblage in the ED of Egypt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abd El-Naby H, Frisch W (2006) Geochemical constraints from the Hafafit Metamorphic Complex (HMC): evidence of Neoproterozoic back-arc basin development in the central Eastern Desert, Egypt. J Afr Earth Sci. 45:173–186.

    Article  CAS  Google Scholar 

  • Abd El-Rahman AM (1990) Petrogenesis of early-orogenic diorites, tonalites and post-orogenic trondhjemites in the Nubian Shield. J Petrol. 31:1285–1312.

    Article  CAS  Google Scholar 

  • Abd El-Rahman Y, Polat A, Dilek Y, Fryer B, El-Sharkawy M, Sakran S (2009) Geochemistry and tectonic evolution of the Neoproterozoic Wadi Ghadir ophiolite, Eastern Desert. Egypt Lithos. 113:158–178.

    Article  CAS  Google Scholar 

  • Abd El-Wahed M (2003) Structural and metamorphic evolution of Wadi Dubur metasediments, Central Eastern Desert. Ann Geol Surv Egypt. 26:71–105.

    Google Scholar 

  • Abdeen MM, Abdelghaffar AA (2011) Syn- and post-accretionary structures in the Neoproterozoic Central Allaqi-Heiani suture zone, Southeastern Egypt. Precambrian Res. 185:95–108.

    Article  CAS  Google Scholar 

  • Abdel-Karim AM, Azzaz SA, Moharem AF, El-Alfy H (2008) Petrological and geochemical studies on the ophiolite and island arc association of Wadi Hammaryia. Egypt Arab J Sci Eng. 33:117–138.

    CAS  Google Scholar 

  • Abdel-Karim AM (2021) Neoproterozoic ophiolitic and arc metavolcanics of Egyptian Nubian Shield. In: Hamimi et al. (Eds), Geology of the Egyptian Nubian Shield, Springer Nature Switzerland AG, Cham. pp 209–238.

  • Abdelnasser A, Kumral M (2016) Mineral chemistry and geochemical behavior of hydrothermal alterations associated with mafic intrusive-related Au deposits at the Atud area, Central Eastern Desert, Egypt. Ore Geol Rev. 77:1–24.

    Article  Google Scholar 

  • Abdel Rahman EA, Qaaud N, Emam A, Abdou NM (2013) Plutonites of Wadi Um Arka, Allaqi region, South Eastern Desert, Egypt: remote sensing and geochemical aspects. J Biol Earth Sci. 3(2):18–38

    Google Scholar 

  • Abdel-Rahman AM (2021) Petrogenesis of a rare Ediacaran tonalite–trondhjemite–granodiorite suite, Egypt, and implications for Neoproterozoic Gondwana assembly. Geol Mag. 158(4):701–722.

    Article  CAS  Google Scholar 

  • Abdelsalam MG, Abdeen MM, Dowaidar HM, Stern RJ, Abdelghaffar AA (2003) Structural evolution of the Neoproterozoic Western Allaqi-Heiani suture, southeastern Egypt. Precambrian Res. 124:87–104.

    Article  CAS  Google Scholar 

  • Abu EI-Ela FF (1996) The petrology of the Abu Zawal gabbroic intrusion, Eastern Desert, Egypt: an example of an island-arc setting. J Afr Earth Sci. 22:147–157.

    Article  Google Scholar 

  • Abu EI-Ela FF (1997) Geochemistry of an island-arc plutonic suite: Wadi Dabr intrusive complex, Eastern Desert, Egypt. J Afr Earth Sci. 24:473–496.

    Article  Google Scholar 

  • Abu El-Ela FF (1999) Neoproterozoic tholeiitic arc plutonism: petrology of gabbroic intrusions in the El-Aradiya area, Eastern Desert, Egypt. J Afr Earth Sci. 28:721–741.

    Article  Google Scholar 

  • Abu El-Enen MM, Abu-Alam TS, Whitehouse MJ, Ali KA, Okrusch M (2016) P-T path and timing of crustal thickening during amalgamation of East and West Gondwana: A case study from the Hafafit Metamorphic Complex, Eastern Desert of Egypt. Lithos. 263:213–238.

    Article  CAS  Google Scholar 

  • Abu El-Leil I, Bekhit MH, Tolba AS, Moharem AF, Shahin TM (2015) Geological, structural and petrotectonica aspectable features of Neoproterozoic rocks, G. El Dob area, North Eastern Desert, Egypt. Intern J Sci Eng Appl Sci. 1:332–350.

    Google Scholar 

  • Abu El-Leil HM, Azzam MH, Bekhit MH, El-Shaheed IA (2017) Geology and geochemistry of magmatic rocks, Gabal Elba Area, South Eastern Desert, Egypt. Rep Opin. 9:9–27.

    Google Scholar 

  • Akaad MK, Abu El-Ela AM (2002) Geology of the basement rocks in the eastern half of the belt between latitudes 25°30′ and 26° 30′ N Central Eastern Desert, Egypt. Geol Surv Egypt. 78:75.

    Google Scholar 

  • Ali KA, Stern RJ, Manton WI, Kimurab J-I, Khamees HA (2009) Geochemistry, Nd isotopes and U-Pb SHRIMP zircon dating of Neoproterozoic volcanic rocks from the Central Eastern Desert of Egypt: new insights into the 750 Ma crust-forming events. Precambrian Res. 171:1–22.

    Article  CAS  Google Scholar 

  • Ali KA, Azer MK, Gahlan HA, Wilde SA, Samuel MD, Stern RJ (2010a) Age constraints on the formation and emplacement of Neoproterozoic ophiolites along the Allaqi-Heiani suture, South Eastern Desert of Egypt. Gondwana Res. 18:583–595.

    Article  CAS  Google Scholar 

  • Ali KA, Stern RJ, Manton WI, Johnson PR, Mukherjee SK (2010b) Neoproterozoic diamictite in the Eastern Desert of Egypt and Northern Saudi Arabia: Evidence of 750 Ma glaciation in the Arabian Nubian Shield? Intern J Earth Sci. 99:705–726.

    Article  CAS  Google Scholar 

  • Ali EA, Abdelrahman EM, Guang W (2014) Southeast Bayuda volcano-sedimentary sequences (Kurmut terrane, Sudan): juvenile island arc series within the mega-shear zone marking the eastern boundary of the Saharan Metacraton. Arab J Geosci. 7:447–456.

    Article  CAS  Google Scholar 

  • Ali KA, Zoheir BA, Stern RJ, Andresen A, Whitehouse MJ, Bishara WW (2016) Lu–Hf and O isotopic compositions on single zircons from the North Eastern Desert of Egypt, Arabian–Nubian Shield: implications for crustal evolution. Gondwana Res. 32:181–192.

    Article  CAS  Google Scholar 

  • Alibert C, McCulloch MT (1993) Rare earth element and Nd isotopic compositions of the banded iron-formations and associated shales from Hamersley, Western Australia. Geochim Cosmochim Acta. 57:187–204.

    Article  CAS  Google Scholar 

  • Atia MS, Kabesh ML, Dawoud M (1998) Geochemistry, tectonic setting and classification of some granitoids, Gebel Abu El-Hassan, North Eastern Desert, Egypt. Acta Mineral-Petrograph Szeged. 39:49–76.

    CAS  Google Scholar 

  • Bakhit BR, Maurice AE, Basta FF (2007) Subduction-related Lewiwi Gabbros, South Eastern Desert Egypt: mineralogy and geochemistry. In: Proceedings of the 5th international conference on the geology of Africa, Assuit, Egypt, vol 5, pp 155–180.

  • Barker F (1979) Trondhjemite: definition, environment and hypotheses of origin. In: Barker F (ed) Trondhjemites, dacites, and related rocks, develpments in petrology, vol 6. Elsevier, Amsterdam, pp 1–12.

    Google Scholar 

  • Barker F, Arth JG (1976) Generation of trondhjemite-tonalite suites. Geology. 4:596–600.

    Article  CAS  Google Scholar 

  • Basta FF, Maurice AE, Bakhit BR, Ali KA, Manton WI (2011) Neoproterozoic contaminated MORB of Wadi Ghadir ophiolite, NE Africa: Geochemical and Nd and Sr isotopic constraints. J Afr Earth Sci. 59:227–242.

    Article  CAS  Google Scholar 

  • Basta FF, Maurice AE, Bakhit BR, Azer MK, El-Sobky A (2017) Intrusive rocks of the Wadi Hamad area, North Eastern Desert, Egypt: change of magma composition with maturity of Neoproterozoic continental island arc and the role of collisional plutonism in the differentiation of arc crust. Lithos. 288–289:248–263.

    Article  Google Scholar 

  • Beccaluva P, Girolamo G, Macciotta T, Morra V (1983) Magma affinities and fractionation trends in ophiolites. Ofioliti. 8:307–324.

    CAS  Google Scholar 

  • Bhatia MR (1985) Rare earth geochemistry of Australian Paleozoic greywackes and mudrocks: provenance and tectonic control. Sediment Geol. 45:97–113.

    Article  CAS  Google Scholar 

  • Bierlein FB (1995) Rare-earth element geochemistry of clastic and chemical metasedimentary rocks associated with hydrothermal sulphide mineralisation in the Olary Block, South Australia. Chem Geol. 122:77–98.

    Article  CAS  Google Scholar 

  • Button A, Brock TD, Cook PJ, Eugster HP, Goodwin AM, James HL, Margulis L, Nealson KH, Nriagu JO, Trendall AF, Walter MR (1982) Sedimentary iron deposits evaporites and phosphorites: state of art report. In: Holland HD, Schidlowski M (eds) Mineral deposits and the evolution of the biosphere. Springer, Berlin, pp 259–273.

    Chapter  Google Scholar 

  • Cooper JA, Stacey JS, Stoeser DB, Fleck RJ (1973) An evaluation of the zircon method of isotopic dating in the southern Arabian Craton. Contrib Miner Petrol. 68:429–439.

    Article  Google Scholar 

  • Cox KG, Bell JD, Pankhurst RJ (1979) The interpretation of igneous rocks. George Allen & Unwin, Crows Nest, p 218.

    Book  Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature. 347:662–665.

    Article  CAS  Google Scholar 

  • Dixon TH (1981) Gebel Dahanib, Egypt: a Late Precambrian layered sill of komatiitic composition. Contrib Mineral Petrol. 76:42–52.

    Article  CAS  Google Scholar 

  • El Bahariya GA (2019) Geochemistry and tectonic setting of Neoproterozoic rocks from the Arabian–Nubian Shield: emphasis on the Eastern Desert of Egypt. Geochemistry and tectonic setting of Neoproterozoic rocks from the Arabian–Nubian Shield. IntechOpen, London, pp 1–25.

    Google Scholar 

  • El Habaak GH (2004) Pan-African skarn deposits related to banded iron formation, Um Nar area, central Eastern Desert, Egypt. J Afr Earth Sci. 38:199–221.

    Article  Google Scholar 

  • El Mezayen AM, Heikal MA, Omar SA, El-Feky MG, Lasheen SR (2015) Petrology, geochemistry and fractional modelling of El-Gidami Neoproterozoic granitic Rocks, Central Eastern Desert, Egypt. Nat Sci. 5(13):102–114.

    Google Scholar 

  • El Kalioubi B, Fowler A, Abdelmalik K (2020) The metamorphism and deformation of the basement complex in Egypt. In: Hamimi Z et al (eds) The geology of Egypt, regional geology reviews. Springer, Cham, pp 191–251.

    Chapter  Google Scholar 

  • El-Gaby S, List FK, Tehrani R (1988) Geology, evolution and metallogeneses of the Pan-African Belt in Egypt. In: El-Gaby S, Greiling RO (eds) The Pan-African Belt of the northeast Africa and adjacent areas. Vieweg Verlag, Berlin, pp 17–68.

    Google Scholar 

  • El-Kalioubi B, Salem A, Mashaly A, Attawiya M (1987) The origin and tectonic setting of some metavolcanics along the Idfu-Mersa Alam road Eastern Desert. Middle East Res Centre (MERC), Ain Shams Univ. Earth Sci. 1:19–34.

    Google Scholar 

  • El-Mahallawi MM, Arva-Sos E (1993) Petrography, geochemistry and K-Ar dating of some metagabbros from the central eastern Desert of Egypt. Acta Mineral-Petrograph Szeged. 3:71–78.

    Google Scholar 

  • El-Nisr SA (2003) Tectonic setting and petrogenetic evolution of Wadi Erier Rocks, South Eastern Desert, Egypt. Qatar Univ J. 23:23–40.

    CAS  Google Scholar 

  • El-Ramly MF, Hashad AH, Attawyia MY, Mansour MM (1982) Geochemistry of Kolet Umm Kharit bimodal metavolcanics, south Eastern Desert, Egypt. Ann Geol Surv Egypt. 12:103–120.

    CAS  Google Scholar 

  • El-Sayed MM, Mohamed FH, Furnes H, Kanisawa S (2002) Geochemistry and petrogenesis of the Neoproterozoic granitoids in the Central Eastern Desert, Egypt. Chem Erde. 62:317–346.

    Article  CAS  Google Scholar 

  • El-Shazly AK, Khalil KI, Helba HA (2019) Geochemistry of banded iron formations and their host rocks from the Central Eastern Desert of Egypt: A working genetic model and tectonic implications. Precambrian Res. 325:192–216.

    Article  CAS  Google Scholar 

  • El-Tokhi M, Alaabed S, Amin BM (2010) Geochemistry and tectonic studies of metavolcanics of Um Anab area, North Eastern Desert, Egypt. Eur J Sci Res. 42:507–524.

    Google Scholar 

  • Essawy M, Hassan M (1977) The occurrence of prehnite in uralitized gabbros from Egypt. Verhadul Geol BA. 3:405–406.

    Google Scholar 

  • Fedo CM, Nesbitt HW, Young GM (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology. 23:921–924.

    Article  CAS  Google Scholar 

  • Finger F, Helmy HM (1998) Composition and total-Pb model ages of monazite from high-grade paragenesis in the Abu Swayel area, south Eastern Desert, Egypt. Mineral Petrol. 62:269–289.

    Article  CAS  Google Scholar 

  • Fowler A, Ali K, Omar S, Eliwa H (2006) The significance of gneissic rocks and synmagmatic extensional ductile shear zones of the Barud area for the tectonics of the North Eastern Desert, Egypt. J Afr Earth Sci. 46:201–220.

    Article  Google Scholar 

  • Fowler A, Khamees H, Dowidar H (2007) El-Sibai gneissic complex, Central Eastern Desert, Egypt: Folded nappes and syn-kinematic gneissic granitoid sheets—not a core complex. J Afr Earth Sci. 49:119–135.

    Article  Google Scholar 

  • Fritz H, Puhl J (1996) Granitoid emplacement in a shear-extensional setting: a semiquantitative approach from physical parameters (Eastern Desert, Egypt). Zentralblat Geol Paläontol. 1:257–276.

    Google Scholar 

  • Fritz H, Wallbrecher E, Khudier AA, Abu El-Ela F, Dallmeyer RD (1996) Formation of Neoproterozoic metamorphic core complexes during oblique convergence, Eastern Desert, Egypt. J Afr Earth Sci. 23:311–329.

    Article  Google Scholar 

  • Fritz H, Abdelsalam M, Ali KA, Bingen B, Collins AS, Fowler AR, Ghebreab W, Hauzenberger CA, Johnson PR, Kusky TM, Macey P, Muhongo S, Stern RJ, Viola G (2013) Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution. J Afr Earth Sci. 86:65–106.

    Article  CAS  Google Scholar 

  • Furnes H, El-Sayed MM, Khalil SO, Hassanen MA (1996) Pan-African magmatism in the Wadi El-Imra district, Central Eastern Desert, Egypt: Geochemistry and tectonic environment. J Geol Soc Lond. 153:705–718.

    Article  CAS  Google Scholar 

  • George R, Turner S, Hawkesworth C, Morris J, Nye C, Ryan J, Zheng SH (2003) Melting processes and fluid and sediment transport rates along the Alaska-Aleutian arc from an integrated U–Th–Ra–Be isotope study. J Geophys Res. 108:22–52.

    Article  Google Scholar 

  • Ghebretensae GF, Yao H, Zhao J, Zhao K (2019) Neoproterozoic magmatism in the Southern Arabian–Nubian Shield: Implications for petrogenesis and tectonic setting Egypt. Arab J Sci Eng. 44:6525–6545.

    Article  CAS  Google Scholar 

  • Gichile S, Fyson WK (1993) An inference of the tectonic setting of the Adola Belt of Southern Ethiopia from the geochemistry of magmatic rocks. J Afr Earth Sci. 16(3):235–246.

    Article  CAS  Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer, Berlin, p 390.

    Book  Google Scholar 

  • El Habaak GH (2005) Petrogenesis and tectonic implication of the rock successions hosting banded iron formation at Um Anab area, North Eastern Desert of Egypt. In: Proceedings of the 4th international conference on the geology of Africa, Assuit, vol 2, pp 479–513.

  • Hamdy M, Gamal El Dien H (2017) Nature of serpentinization and carbonation of ophiolitic peridotites (Eastern Desert, Egypt): Constrains from stable isotopes and whole-rock geochemistry. Precambrian Res. 298:593–614.

    Article  CAS  Google Scholar 

  • Hamdy M, Khedr M (2021) Ophiolite-associated Cu, Ni, and Cr deposits. In: Hamimi Z et al (eds) The geology of the Egyptian Nubian Shield, regional geology reviews. Springer, Cham, pp 487–533.

    Chapter  Google Scholar 

  • Hassan MA, Hashad AH (1990) Precambrian of Egypt. In: Said R (ed) Geology of Egypt. Balkema, Rotterdam, pp 175–219.

    Google Scholar 

  • Hassanien SM (2001) Volcano-sedimentary sequence of Gabal Um Khariga, Central Eastern Desert, Egypt. Egypt J Geol. 45:65–88.

    Google Scholar 

  • Hassanipak AA, Ghazi AM, Wampler JM (1996) REE characteristics and K/Ar ages of the Band-Ziarat ophiolite Complex, Southeastern Iran. Can J Earth Sci. 33:1534–1542.

    Article  Google Scholar 

  • Helmy HM, Ahmed AF, El Mahallawi MM, Ali SM (2004) Pressure, temperature and oxygen fugacity conditions of calc-alkaline granitoids, Eastern Desert of Egypt, and tectonic implications, Egypt. J Afr Earth Sci. 38:255–268.

    Article  CAS  Google Scholar 

  • Hussein AA, Ali MM, El Ramly MF (1982) A proposed new classification of the granites of Egypt. J Volc Geother Res. 14:187–198.

    Article  CAS  Google Scholar 

  • Ilyin AV (2009) Neoproterozoic banded iron formation. Lithol Miner Resour. 44:78–86.

    Article  CAS  Google Scholar 

  • Irvine TN, Baragar WA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci. 8:523–548.

    Article  CAS  Google Scholar 

  • Johnson PR, Halverson GP, Kusky TM, Stern RJ, Pease V (2013) Volcano-sedimentary basins in the Arabian–Nubian Shield: Markers of repeated exhumation and denudation in a Neoproterozoic accretionary orogen. Geosciences. 3:389–445.

    Article  Google Scholar 

  • Jöns N, Schenk V (2007) Relics of the Mozambique ocean in the central Eastern African Orogen: Evidence from the Vohibory Block of southern Madagascar. J Metamorph Geol. 26:17–28.

    Article  Google Scholar 

  • Kazemi KS, Jamal SS, Hashem EM, Dabiri R (2018) Geochemistry and Tectonic setting of Kohe Siah volcanoes, North Qorveh, and Sanandaj, Iran. Open J Geol. 8:474–488.

    Article  Google Scholar 

  • Kerrich R, Wyman DA (1996) The trace element systematics of igneous rocks in mineral exploration: an overview. In: Wyman DA (ed) Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Short course notes, vol 12. Geological Association of Canada, St. John’s, pp 1–50.

    Google Scholar 

  • Khalil KI, El-Shazly AK (2012) Petrological and geochemical characteristics of Egyptian banded iron formations: Review and new data from Wadi Kareim. Geochem Explor Environ Anal. 12:105–126.

    Article  CAS  Google Scholar 

  • Khalil KI, El-Shazly AE, Lehmann B (2015) Late Neoproterozoic banded iron formation (BIF) in the central Eastern Desert of Egypt: Mineralogical and geochemical implications for the origin of the Gabal El Hadid iron ore deposit. Ore Geol Rev. 69:380–399.

    Article  Google Scholar 

  • Khalil AE, El-Desoky HM, Salem AA (2017) Geochemistry and petrogenesis of the Neoproterozoic island arc gabbros-diorite-tonalite complexes at Wadi Abu El-Lijam and Wadi Selilab areas, central Eastern Desert, Egypt. Egypt J Geol. 61:1–11.

    Google Scholar 

  • Kozyrev V, Girma K, Safonov T, Bekele WM, Tuhankin V, Bestujev A, Baijapov A, Towelde MT, Gurbanvich G, Kaitukov M, Arijapov A (1985) Regional geological and exploration work for gold and other minerals in the Adola Goldfields II. Ethiopian Mineral Resources Development Corporation, Addis Ababa, Ethiopia, p 78.

    Google Scholar 

  • Le Maitre RW, Bateman P, Dudek A, Keller J, Lemeyre J, Le Bas MJ, Sabine PA, Schmidt R, Sorensen H, Streckeisen A, Wooley AR, Zanettin B (1989) A Classification of igneous rocks and glossary of terms. Blackwell, Oxford, p 193.

    Google Scholar 

  • Loizenbauer J, Wallbrecher E, Fritz H, Neumayr P, Khudeir AA, Kloetzli U (2001) Structural geology, single zircon ages and fluid inclusion studies of the Meatiq metamorphic core complex: Implications for Neoproterozoic tectonics in the Eastern Desert of Egypt. Precambrian Res. 110:357–383.

    Article  CAS  Google Scholar 

  • Lundmark AM, Andresen A, Hassan M, Augland LE, Boghdady GY (2012) Repeated magmatic pulses in the East African Orogen in the Eastern Desert, Egypt: An old idea supported by new evidence. Gondwana Res. 22:227–237.

    Article  CAS  Google Scholar 

  • Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull. 101:635–643.

    Article  CAS  Google Scholar 

  • Maurice AE, Bakhit BR, Basta FF, Khiamy AA (2013) Geochemistry of gabbros and granitoids (M- and I-types) from the Nubian Shield of Egypt: Roots of Neoproterozoic intra-oceanic island arc. Precambrian Res. 224:397–411.

    Article  CAS  Google Scholar 

  • McLennan SM, Taylor SR, McCulloch MT, Maynard JB (1990) Geochemical and isotopic determination of deep sea turbidites: Crustal evolution and plate tectonic associations. Geochem Cosmochem Acta. 54:2015–2049.

    Article  CAS  Google Scholar 

  • Miyashiro A (1974) Volcanic rock series in island arc and active continental margins. Am J Sci. 274:321–355.

    Article  CAS  Google Scholar 

  • Miyashiro A (1978) Nature of alkalic volcanic rock series. Contrib Mineral Petrol. 66:91–104.

    Article  CAS  Google Scholar 

  • Moghazi AM (2002) Petrology and geochemistry of Pan-African granitoids Kab Amiri area, Egypt: implications for tectonomagmatic stages in the Nubian Shield evolution. Mineral Petrol. 75:41–67.

    Article  CAS  Google Scholar 

  • Moghazi AM, Mohamed FH, Kanisawa S (1999) Geochemical and petrological evidence of calc-alkaline and A-type magmatism in the Homrit Waggat and EI-Yatima areas of Eastern Desert, Egypt. J Afr Earth Sci. 29:535–549.

    Article  CAS  Google Scholar 

  • Mohamed FH, Hassanen MA (1996) Geochemical evolution of arc-related mafic plutonism in the Umm Naggat district, Eastern Desert of Egypt. J Afr Earth Sci. 22:269–283.

    Article  CAS  Google Scholar 

  • Nagihara SS, Casey JF (2001) Whole-rock geochemistry of amphibolites and metagabbros from the West Iberia Margin, Leg 173. In: Beslier et al. (ed) Proceedings of ocean drilling program (ODP), scientific results, p 173.

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature. 299:715–717.

    Article  CAS  Google Scholar 

  • Neumayr P, Hoinkes G, Puhl J, Mogessie A, Khudeir AA (1998) The Meatiq dome (Eastern Desert, Egypt) a Precambrian metamorphic core complex: petrological and geological evidence. J Metamorph Geol. 16:259–279.

    Article  CAS  Google Scholar 

  • Obeid MA (2006) The Pan-African arc-related volcanism of the Wadi Hodein area, south Eastern Desert, Egypt: Petrological and geochemical constraints. J Afr Earth Sci. 44:383–395.

    Article  CAS  Google Scholar 

  • Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe S (ed) Andesites. Wiley, New York, pp 525–548.

    Google Scholar 

  • Pearce JA (1983) Role of sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva, Cheshire, pp 230–249.

    Google Scholar 

  • Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet Sci Lett. 19:290–300.

    Article  CAS  Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol. 25:956–983.

    Article  CAS  Google Scholar 

  • Rollinson HR (1993) Using geochemical data: Evaluation, presentation, interpretation. Longman Scientific and Technical, London.

    Google Scholar 

  • Roser BP, Korsch RJ (1988) Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chem Geol. 67(1–2):119–139.

    Article  CAS  Google Scholar 

  • Shallaly NA (2019) Metamorphic evolution of Pan-African Wadi El Miyah metasediments, Central Eastern Desert, Egypt: A distinctive LP/HT metapelitic sequence from the northern Arabian-Nubian Shield. Egypt. Arab J Geosci. 12:1–18.

    Article  CAS  Google Scholar 

  • Sharara NA, Abu El-Ela FF, El-Nady OM, Soliman MF (1990) Geology and geochemistry of the island arc association of the area around GabaI El Urf, Eastern Desert, Egypt. Bull Fac Sci Assiut Univ. 19:97–122.

    Google Scholar 

  • Shervais JW (1982) Ti–V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett. 59:101–118.

    Article  CAS  Google Scholar 

  • Shinjo R, Woodhead JD, Hergt JM (2000) Geochemical variation within the northern Ryukyu Arc: magma source compositions and geodynamic implications. Contrib Mineral Petrol. 140:263–282.

    Article  CAS  Google Scholar 

  • Stern EJ (1981) Petrogenesis and tectonic setting of late Precambrian estimation volcanic rocks, central Eastern Desert of Egypt. Precambrian Res. 16:197–232.

    Article  Google Scholar 

  • Stern RJ (2002) Crustal evolution in the East African Orogen: A neodymium isotopic perspective. J Afr Earth Sci. 34:109–117.

    Article  CAS  Google Scholar 

  • Stern RJ (2018) Neoproterozoic formation and evolution of Eastern Desert continental crust: the importance of the infrastructure-superstructure transition. J Afr Earth Sci. 146:15–27.

    Article  CAS  Google Scholar 

  • Stern RJ, Hedge CE (1985) Geochronologic and isotropic constraints on late Precambrian crustal evolution in the Eastern Desert of Egypt. Am J Sci. 285:97–127.

    Article  CAS  Google Scholar 

  • Stern RJ, Kröner A, Rashwan AA (1991) A Late Precambrian (710 Ma) high volcanicity rift in the southern Eastern Desert of Egypt. Geol Rundschau. 80:155–170.

    Article  CAS  Google Scholar 

  • Stern RJ, Avigad D, Miller NR, Beyth M (2006) Evidence for the Snowball Earth hypothesis in the Arabian–Nubian Shield and the East African Orogen. J Afr Earth Sci. 44:1–20.

    Article  Google Scholar 

  • Stern RJ, Ali KA, Asimow PD, Azer MK, Leybourne MI, Mubarak HS, Ren M, Romer RL, Whitehouse MJ (2020) The Atud gabbro–diorite complex: Glimpse of the Cryogenian mixing, assimilation, storage and homogenization zone beneath the Eastern Desert of Egypt. J Geol Soc Lond. 177:965–980G.

    Article  CAS  Google Scholar 

  • Stern R, Ali K, Andresen A, Wilde S, Abu El-Enen M, Hassan I (2010) Results of geochronological investigations in Sinai undertaken as part of the 2008 JEBEL field trip. In: Pease et al. (ed) JEBEL Project October 2009 field excursion to the Midyan Terrane, Kingdom of Saudi Arabia, with reports on research by participants in the JEBEL Project: Saudi Geological Survey Technical Report SGSTR-2, pp 46–51.

  • Sun SS, McDonough WE (1989) Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the oceanic basins, vol 42. Geological Society, Special Publications, London, pp 313–345.

    Google Scholar 

  • Whalen JB, Currie KL, Chappell BW (1987) A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol. 95:407–419.

    Article  CAS  Google Scholar 

  • Wilson M (1989) Igneous petrogenesis. Unwin Hyman, London, p 466.

    Book  Google Scholar 

  • Winter JD (2010) Principles of igneous and metamorphic petrology, 2nd edn. Pearson Prentice Hall, New Jersey.

    Google Scholar 

  • Zen E (1986) Aluminium enrichment in silicate melts by fractional crystallization: Some mineralogic and petrographic constraints. J Petrol. 27:1095–1117.

    Article  CAS  Google Scholar 

  • Zoheir BA, Mehanna AM, Qaoud NN (2008) Geochemistry and geothermobarometry of the Um Eleiga Neoproterozoic island arc intrusive complex, SE Egypt: genesis of a potential gold-hosting intrusion. Appl Earth Sci Trans Inst Mineral Metall B. 117:89–111.

    Article  CAS  Google Scholar 

  • Zoheir BA, Feigenson M, Zi J-W, Turin B, Deshesh F, El-Metwally A (2019) Ediacaran (600 Ma) orogenic gold in Egypt: age of the Atalla gold mineralization and its geological significance. Intern Geol Rev. 61:779–794.

    Article  Google Scholar 

  • Zoheir BA (2004) Gold mineralization in the Um El Tuyor area, South Eastern Desert, Egypt: Geologic context, characteristics and genesis. Ph.D. thesis, München University, Germany, p 125

Download references

Acknowledgements

The authors are grateful to those who gave us permissions to use their geochemical and geochronological data. Eng. Omar Abdel-Aal is acknowledged for his efforts to construct the geochemical diagrams. Special thanks to the managing editor (Dr. Binbin Wang) and two anonymous reviewers who helped to improve the manuscript and the quality of the presented work in general.

Author information

Authors and Affiliations

Authors

Contributions

A-AMA-K: conceptualization, methodology, validation, investigation, writing; MMH: conceptualization, software, validation, investigation, visualization; AAS: conceptualization, methodology, validation, investigation, writing, revision, submission.

Corresponding author

Correspondence to Adel A. Surour.

Ethics declarations

Conflict of interest

The authors declare that they do not have any known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

Supplementary file2 (DOCX 22 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Karim, AA.M., Hamdy, M.M. & Surour, A.A. Geochemistry of island arc assemblage in the Eastern Desert of Egypt and the role of Pan-African magmatism in crustal growth of the Arabian–Nubian Shield: A review. Acta Geochim 43, 588–622 (2024). https://doi.org/10.1007/s11631-024-00676-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-024-00676-4

Keywords

Navigation