Log in

Synthesis and characterization of zeolite X obtained from kaolin for adsorption of Zn(II)

  • Published:
Chinese Journal of Geochemistry Aims and scope Submit manuscript

Abstract

This study deals with the synthesis and characterization of low-silica zeolite X, from calcined Kalabsha kaolin, for adsorption of Zn(II) ions from aqueous solution. The synthesis processes is performed under hydrothermal treatment in alkaline solutions. The obtained zeolite samples are characterized using X-ray diffraction, grain size distribution, surface area, and SEM. The critical molar ratios of both SiO2/Al2O3 and K2O/Na2O are about 2.9 and 0.16, respectively. Those ratios are needed to give individual low silica zeolite X in a minimum reaction time. The adsorption capacity of the synthesized products is determined by adsorption of Zn(II) ions from solution. The results suggest that the zeolite obtained could be converted to a beneficial product, which will be used in future as an ion exchanger in removing heavy metals from wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akolekar D., Chaffee A., and Howe R.F. (1997) The transformation of kaolin to low-silica X zeolite [J]. Zeolite. 19, 359–365.

    Google Scholar 

  • Basaldella E.I. and Tara J.C. (1995) synthesis of LSX zeolite in the Na/K system: Influence of the Na/K ratio. In Zeolite [M]. Elsevier Science. 15, 243–246.

    Article  Google Scholar 

  • Chandrasekhar S. and Pramada P.N. (1999) Investigation on the Synthesis of Zeolite NaX from Kerala Kaolin [J]. J. Porous Materials. 6, 283–297.

    Article  Google Scholar 

  • Chandrasekhar S. and Pramada P.N. (2008) Microwave assisted synthesis of zeolite A from metakaolin [J]. Microporous and Mesoporous Materials. 108(issues 1–3), 152–161.

    Article  Google Scholar 

  • Cheetan A. and Day A. (1992) Solid State Chemistry Compounds [M]. pp.266. Oxford University Press Inc., New York.

    Google Scholar 

  • Coe C.C., Kuznieki S.M., Srinivasan R., and Jenkins R.J. (1988) In Perspectives in Molecular Sieves Science (eds. Flank W.H. and Whyte T.E.) [M]. pp.478. ACS Symp. Ser 368. Am Chem. Soc. Washington, DC.

    Chapter  Google Scholar 

  • Covarrubias C., Garcý’a R., Arriagada R., Ya’nez J., and Garland M. (2007) Cr(III) exchange on zeolite obtained from kaolin and natural mordenite [J]. Microporous and Mesoporous Materials. 88, 220–231.

    Article  Google Scholar 

  • Dwyer J. (1984) Chemistry and Industry [M]. pp.258–269.

  • Elena I., Basaldella E.I., Kikot A., and Tara J.C. (1995) Effect of pellet pore size and synthesis conditions in the in-situ synthesis of LSX, Ind [J]. Eng. Chem. Res. 34, 1990–1992.

    Google Scholar 

  • El Badry O., Hasssan M., and El Shimi A. (1981) Contribution to Geochemistry of Some Claystones and Kaolinites of Kalabsha, Egypt [C]. ICSOBA-AIM Conference Cagliarie Italy. No.16, 325–332.

  • Falamaki C., Afaran M.S., and Aghaie A. (2006) In-situ crystallization of highly oriented silicalite films on porous zircon supports [J]. J. Am. Ceramic Society. 89, 408–414.

    Article  Google Scholar 

  • Gianneto G., Montes A., and Rodrý’guez G. (2000) Zeolitas Caracterý’sticas, Propiedades y Aplicaciones Industriales, Innovacio’n Tecnolo’gica, Facultad de Ingenierý’a—UCV, Caracas, p.305.

    Google Scholar 

  • Gualtieri A., Norby P., Artoli G., and Hanson J. (1997) Kinetics of formation of Zeolite Na-A (LTA) from nature kaolinites [J]. Physics and Chemistry of Minerals. 24, 191–199.

    Article  Google Scholar 

  • Hassan M.S., Ismael I.S., and IbrahimI A. (2002) Synthesis of zeolite Al-Na from low-grade Kalabsha kaolin [J]. Journal of Mining, Processing, Metallurgical, Recycling and Environmental Technology, Erzmetall. 55(9), 489–494.

    Google Scholar 

  • Ichiura H., Okamura N., Kitaoka T., and Tanaka H. (2001) Preparation of zeolite sheet using a papermaking technique Part II The strength of zeolite sheet and its hygroscopic characteristics [J]. J. Material Science. 36, 4921–4926.

    Article  Google Scholar 

  • Jiménez A.F., Monzó M., Vicent M., Barba A., and Palomo A. (2008) Alkaline activation of metakaolin-fly ash mixtures: Obtain of zeoceramics and zeocements [J]. Microporous and Mesoporous Materials. 108(issues 1–3), 41–49.

    Article  Google Scholar 

  • Klug P.H. and Alexander L.E. (1959) X-ray diffraction procedures (2nd edition) [M]. pp.716. Wiley, New York.

    Google Scholar 

  • Lund T., Koretsky C., Landry C., Schaller M., and Das S. (2008) Surface complexation modeling of Cu(II) adsorption on mixtures of hydrous ferric oxide and kaolinite [J]. Geochemical Transactions. 9:9 doi:10.1186/1467-4866-9-9.

    Article  Google Scholar 

  • Meenakshi S., Pius A., Karthikeyan G., and Appa Rao B.V. (1991) The pH dependence of efficiency of activated alumina in defluoridation of water, Indian [J]. J. Environ. Protect. 11, 511–513.

    Google Scholar 

  • Meenakshi S. and Viswanathan N. (2007) Identification of selective ion-exchange resin for fluoride sorption [J]. Journal of Colloidal and Interface Science. 308, 438–450.

    Article  Google Scholar 

  • Mirfendereski S.M., Daneshpour R., and Mohammadi T. (2006) Synthesis and characterization of T-type zeolite membrane on a porous mullite tube [J]. Desalination. 200, 77–79.

    Article  Google Scholar 

  • Nah I., Hwang K., Jeonq C., and Choi H.B. (2006) Removal of Pb ion from water by magnetically modified zeolite [J]. Minerals Engineering. 19, 1452–1455.

    Article  Google Scholar 

  • Petrus R. and Warchol R. (2003) Micropor [J]. Mesopor. Mater. 61, 137.

    Article  Google Scholar 

  • Rollman L.D. and Valyocisk E.W. (1981) Inorganic Synthesis [M]. Jhon Wiley and Sons, New York. 22, 61.

    Google Scholar 

  • Roque R., Malherbe A., Valle M.W., Marquez F., Duconge J., and Goosen M.F.A. (2006) Synthesis and characterization of zeolite based porous ceramic membranes [J]. Separation Science and Technology. 41, 73–96.

    Article  Google Scholar 

  • Said R. and Mansour A.O. (1971) The discovery of a new kaolin deposits in Wadi Kaslabsha, Nubia, Egypt [J]. Geol. Surv. & Min. Auth. Rept. No. 54.

  • Shata S. (1991) Origin of Some Kaolin Deposits in West Central Sinai [D]. pp.180. M. Sc. Faculty of Scince, Suez Canal Univ.

  • Tatic M. and Drzaj B. (1985) In Zeolite [M]. pp.129. Elsevier Science Publisher B.V., Yougoslavia.

    Google Scholar 

  • Wang S.B., Li H.T., and Xu L.Y. (2006) Application of zeolite MCM-22 for basic dye removal from wastewater [J]. Journal of Colloid and Interface Science. 295, 71–78.

    Article  Google Scholar 

  • Worrl W.E. (1968) Textbook of Clays: Their Nature, Origin and General Properties [M]. Macharen and Sons, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Ismael.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ismael, I.S. Synthesis and characterization of zeolite X obtained from kaolin for adsorption of Zn(II). Chin. J. Geochem. 29, 130–136 (2010). https://doi.org/10.1007/s11631-010-0130-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-010-0130-x

Key words

Navigation