Log in

Structural Optimization of the Inlet Header of Supercritical Carbon Dioxide Printed Circuit Board Heat Exchanger

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Supercritical carbon dioxide printed circuit board heat exchangers are expected to be applied in third-generation solar thermal power generation. However, the uniformity of supercritical carbon dioxide entering the heat exchanger has a significant impact on the overall performance of the heat exchanger. In order to improve the uniformity of flow distribution in the inlet header. This article studies and optimizes the inlet header of a printed circuit board heat exchanger through numerical simulation. The results indicate that when supercritical carbon dioxide flows through the header cavity, eddy currents will be generated, which will increase the uneven distribution of flow rate, while reducing the generation of eddy currents will improve the uniform distribution of flow rate. When the dimensionless factor of the inlet header is 6, the hyperbolic configuration is the optimal structure. We also reduced the eddy current region by adding transition segments, and the results showed that the structure was the best when the dilation angle was 10°, which reduced the non-uniformity by 21% compared to the hyperbolic configuration, providing guidance for engineering practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yao M.L., Gan Y.H., Experimental study of a two-phase thermosyphon loop with a horizontal parallel tube evaporator under non-uniform heating conditions. Thermal Science and Engineering Progress, 2023, 44: 102053. DOI: https://doi.org/10.1016/j.tsep.2023.102053.

    Article  Google Scholar 

  2. Li R., Gan Y.H., Luo Q.L., Yan Y.Y., Li L., Research progress on efficient thermal management system for electric vehicle batteries based on two-phase transformation. Applied Thermal Engineering, 2023, 234: 121270. DOI: https://doi.org/10.1016/j.applthermaleng.2023.121270.

    Article  Google Scholar 

  3. Yi F., Gan Y.H., X Z.F., Li Y., Chen H.Y., Experimental study on thermal performance of ultra-thin heat pipe with a novel composite wick structure. International Journal of Thermal Sciences, 2023, 193: 108539 DOI: https://doi.org/10.1016/j.ijthermalsci.2023.108539.

    Article  Google Scholar 

  4. Yi F., Gan Y.H., **n Z.F., Li Y., Chen H.Y., Analysis of thermal characteristics of the heat pipes with segmented composite wicks. International Journal of Thermal Sciences, 2023, 191: 108341. DOI: https://doi.org/10.1016/j.ijthermalsci.2023.108341.

    Article  Google Scholar 

  5. Mehos M., Turchi C., Vidal J., Wagner M., Kruizenga A., Concentrating solar power gen3 demonstration roadmap. U.S. Department of Energy, 2017. DOI: https://doi.org/10.2172/1338899.

  6. Sarmiento A.P.C., Milanez F.H., Mantelli M.B.H., Theoretical models for compact printed circuit heat exchangers with straight semicircular channels. Applied Thermal Engineering: Design, Processes, Equipment, Economics, 2021, 184: 115435. DOI: https://doi.org/10.1016/j.applthermaleng.2020.115435.

    Article  Google Scholar 

  7. Muhammad S., Berrouk A.S., Siddiqui M.S., Awais A.A., Numerical investigation of thermal and hydraulic characteristics of sCO2-water printed circuit heat exchangers with zigzag channels. Energy Conversion and Management, 2020, 224: 113375. DOI: https://doi.org/10.1016/j.enconman.2020.113375.

    Article  Google Scholar 

  8. Shi M.Q., Li Y., Wang Y., Li Q., Cai W.H., Study on flow and heat transfer characteristics of a zigzag microchannel with supercritical methane by numerical simulation. Energy Conservation Technology, 2020, 38(03): 213–216, 229.

    Google Scholar 

  9. Cai W.H., Li Y., Li Q., Wang Y., Chen J., Numerical investigation on thermal-hydraulic performance of supercritical LNG in a Zigzag mini-channel of printed circuit heat exchanger. Applied Thermal Engineering, 2022, 214: 118760.

    Article  Google Scholar 

  10. Liu S., Liu M., Liu R.L., Guo R., Huang Y.P., Zhu X.L., Han B., Huang J.L., Tang J., Thermal-hydraulic performance of zigzag channels with Bending number below unity for printed circuit heat exchanger. Applied Thermal Engineering, 2022, 215: 118989.

    Article  Google Scholar 

  11. Yang Y., Li H., Yao M., Gan W., Zhang Y.F., Investigation on the effects of narrowed channel cross-sections on the heat transfer performance of a wavy-channeled PCHE. International Journal of Heat and Mass Transfer, 2019, 135: 33–43.

    Article  Google Scholar 

  12. Joonyoung S., Lee J.Y., Effect of tangled channels on the heat transfer in a printed circuit heat exchanger. International Journal of Heat and Mass Transfer. 2017, 115: 647–656.

    Article  Google Scholar 

  13. Zhao Z.C., Zhang Y., Chen X.D., Ma X.L., Yang S., Li S.L., Experimental and numerical investigation of thermal-hydraulic performance of supercritical nitrogen in airfoil fin printed circuit heat exchanger. Applied Thermal Engineering, 2019, 168: 114829.

    Article  Google Scholar 

  14. Chen F., Zhang L.S., Huai X.L., Li J.F., Zhang H., Liu Z.G., Comprehensive performance comparison of airfoil fin PCHEs with NACA 00XX series airfoil. Nuclear Engineering and Design, 2017, 315: 42–50.

    Article  Google Scholar 

  15. Li F., Lu Y.W., Wang Y.Q., The influence of wing structure on the flow and heat transfer characteristics of printed circuit board heat exchangers. Energy Storage Science and Technology, 2024, 13(02): 416–424.

    Google Scholar 

  16. Zhu C.Y., Guo Y., Yang H.Q., Ding B., Duan X.Y., Investigation of the flow and heat transfer characteristics of helium gas in printed circuit heat exchangers with asymmetrical airfoil fins. Applied Thermal Engineering, 2020, 186: 116478.

    Article  Google Scholar 

  17. Mueller A.C., Effects of some types of maldistribution on the performance of heat exchangers. Heat Transfer Engineering, 1987, 8(2): 75–86.

    Article  ADS  MathSciNet  Google Scholar 

  18. Tereda F.A., Srihari N., Sunden B., Das S.K., Experimental investigation on port-to-channel flow maldistribution in plate heat exchangers. Heat Transfer Engineering, 2007, 28(5): 435–443.

    Article  ADS  Google Scholar 

  19. Wang C.C., Yang K.S., Tsai J.S., Chen I.Y., Characteristics of flow distribution in compact parallel flow heat exchangers, part I: Typical inlet header. Applied Thermal Engineering, 2011, 31(16): 3226–3234.

    Article  Google Scholar 

  20. Chu W.X., Ma T., Zeng M., Qu T., Wang L.B., Wang Q.W., Improvements on maldistribution of a high temperature multi-channel compact heat exchanger by different inlet baffles. Energy, 2014, 75: 104–115.

    Article  Google Scholar 

  21. Ma T., Zhang P., Shi H.N., Chen Y.T., Wang Q.W., Prediction of flow maldistribution in printed circuit heat exchanger. International Journal of Heat and Mass Transfer, 2020, 152: 119560.

    Article  Google Scholar 

  22. Koo G.W., Lee S.M., Kim K.Y., Shape optimization of inlet part of a printed circuit heat exchanger using surrogate modeling. Applied Thermal Engineering, 2014, 72(1): 90–96.

    Article  Google Scholar 

  23. Camilleri R., Howey D.A., McCulloch M.D., Predicting the flow distribution in compact parallel flow heat exchangers. Applied Thermal Engineering, 2015, 90: 551–558.

    Article  Google Scholar 

  24. Chu W.X., Bennett K., Cheng J., Chen Y.T., Wang Q.W., Numerical study on a novel hyperbolic inlet header in straight-channel printed circuit heat exchanger. Applied Thermal Engineering, 2019, 146: 805–814.

    Article  Google Scholar 

  25. Shi H.Y., Li M.J., Wang W.Q., Qiu Y., Tao W.Q., Heat transfer and friction of molten salt and supercritical CO2 flowing in an airfoil channel of a printed circuit heat exchanger. International Journal of Heat and Mass Transfer, 2020, 150: 119006.

    Article  Google Scholar 

  26. Siddiqui O.K., Zubair S.M., Efficient energy utilization through proper design of microchannel heat exchanger manifold: A comprehensive review. Renewable and Sustainable Energy Reviews. 2017, 74: 969–1002.

    Article  Google Scholar 

  27. Wang H., Gan Y.H., Li R., Liu F.M., Li Y., Experimental study on the thermal performance of a liquid-cooled heat sink integrating heat pipes for dual CPU servers. Applied Thermal Engineering, 2024, 236: 121851.

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (No. 52076006) and National Key Research and Development Program of China (No. 2022YFB4202402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanwei Lu.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Lu, Y., Wang, Y. et al. Structural Optimization of the Inlet Header of Supercritical Carbon Dioxide Printed Circuit Board Heat Exchanger. J. Therm. Sci. (2024). https://doi.org/10.1007/s11630-024-2002-4

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s11630-024-2002-4

Keywords

Navigation