Log in

Spectral Selectivity of CdTe Cells with Substrate Configuration for Photovoltaic/Thermal Applications

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Existing photovoltaic cells with high infrared emissivity generate huge radiative heat loss in photovoltaic/thermal applications and degrade the photothermal performance. The purpose of this work is to evaluate the full spectral absorptivity of CdTe cells to find a spectrally selective photovoltaic cell for photovoltaic/thermal applications. To this end, the solar absorptivity and mid-infrared thermal emissivity of CdTe cells were tested by ellipsometry, UV-Vis-NIR spectrophotometer, and Fourier transform infrared spectrometer. The experimental results show that the AM 1.5 solar spectrum weighted absorptivity of the substrate configuration CdTe cell reaches 0.91, and the mid-infrared emissivity is only 0.29, while the superstrate configuration cell emissivity is as high as 0.9. Further research shows that substrate configuration with a transparent conductive layer on top can be flexibly grown on metal foils and has spectral selectivity with high solar absorptivity and low mid-infrared emissivity should be considered in the future for photovoltaic/thermal applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c :

Light speed/m·s−1

Eg:

Energy bandgap/eV

h :

Plank’s constant/J·s

k :

Extinction coefficient

n :

Refractive index

q :

Electron charge/C

R :

Spectral normal reflectance

T :

Spectral normal transmittance

t :

Temperature/K

AM1.5g :

Air mass 1.5 global solar spectrum

BB:

Black body

ESA:

Enhanced solar absorption

I sub :

Improved substrate configuration

MF:

Metal foil substrate

PV/T:

Photovoltaic/thermal

Sub:

Substrate configuration

Super:

Superstrate configuration

α :

Absorptivity

ε :

Emissivity

η th :

Solar-thermal efficiency

λ :

Wavelength/nm

σ :

Stefan-Boltzmann constant/J·K−1

ω :

Angular frequency

References

  1. Huang G., Wang K., Markides C.N., Efficiency limits of concentrating spectral-splitting hybrid photovoltaic-thermal (PV-T) solar collectors and systems. Light: Science & Applications, 2021, 10(1): 28.

    Article  ADS  Google Scholar 

  2. Michael J.J., S I., Goic R., Flat plate solar photovoltaic-thermal (PV/T) systems: A reference guide. Renewable and Sustainable Energy Reviews, 2015, (51): 62–88.

  3. Das D., Kalita P., Roy O., Flat plate hybrid photovoltaic-thermal (PV/T) system: A review on design and development. Renewable and Sustainable Energy Reviews, 2018, (84): 111–130.

  4. Garcia Noxpanco M., Wilkins J., Riffat S., A review of the recent development of Photovoltaic/Thermal (PV/T) systems and their applications. Future Cities and Environment. 2020, 6(1): 9.

    Article  Google Scholar 

  5. Bigorajski J., Chwieduk D., Analysis of a micro photovoltaic/thermal–PV/T system operation in moderate climate. Renewable Energy, 2019, 137: 127–136.

    Article  Google Scholar 

  6. Diwania S., Agrawal S., Siddiqui A.S., Singh S., Photovoltaic-thermal (PV/T) technology: a comprehensive review on applications and its advancement. International Journal of Energy and Environmental Engineering, 2019, 11(1): 33–54.

    Article  Google Scholar 

  7. Al-Waeli A.H., Kazem H.A., Chaichan M.T., Sopian K., Photovoltaic/thermal (PV/T) systems: principles, design, and applications. Place Springer Nature, 2019.

  8. Dupré O., Vaillon R., Green M.A., Temperature coefficients of photovoltaic devices. Place Springer, 2017, pp. 29–74.

  9. Mellor A., Alonso Alvarez D., Guarracino I., Ramos A., Riverola Lacasta A., Ferre Llin L., Murrell A.J., Paul D.J., Chemisana D., Markides C.N., Ekins-Daukes N.J., Roadmap for the next-generation of hybrid photovoltaic-thermal solar energy collectors. Solar Energy, 2018, 174: 386–398.

    Article  ADS  Google Scholar 

  10. Lämmle M., Kroyer T., Fortuin S., Wiese M., Hermann M., Development and modelling of highly-efficient PVT collectors with low-emissivity coatings. Solar Energy, 2016, 130: 161–173.

    Article  ADS  Google Scholar 

  11. Riverola A., Mellor A., Alvarez D.A., Llin L.F., Guarracino I., Markides C.N., Paul D., Chemisana D., Ekins-Daukes N., Experimental and theoretical study of the infrared emissivity of crystalline silicon solar cells. 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), 2017, pp.1339–1341.

  12. Alonso-Álvarez D., Ferre Llin L., Mellor A., Paul D.J., Ekins-Daukes N.J., ITO and AZO films for low emissivity coatings in hybrid photovoltaic-thermal applications. Solar Energy, 2017, 155: 82–92.

    Article  ADS  Google Scholar 

  13. Alonso-Alvarez D., Augusto A., Pearce P., Llin L.F., Mellor A., Bowden S., Paul D.J., Ekins-Daukes N., Thermal emissivity of silicon heterojunction solar cells. Solar Energy Materials and Solar Cells, 2019, 201: 110051.

    Article  Google Scholar 

  14. Virtuani A., Pavanello D., Friesen G., Overview of temperature coefficients of different thin film photovoltaic technologies. 25th European Photovoltaic Solar Energy Conference and Exhibition/5th World Conference on Photovoltaic Energy Conversion, 2010, 3: 83.

    Google Scholar 

  15. Rejón V., Mis-Fernández R., Hernández-Rodríguez E., Riech I., Peña J.L., The CdS/CdTe solar cells with reactively sputtered a-MoOx/Mo back contact. IEEE 42nd Photovoltaic Specialist Conference (PVSC), 2015, pp. 1–3.

  16. Wu X., High-efficiency polycrystalline CdTe thin-film solar cells. Solar Energy, 2004, 77(6): 803–814.

    Article  ADS  Google Scholar 

  17. Gupta A., Compaan A.D., All-sputtered 14% CdS/CdTe thin-film solar cell with ZnO: Al transparent conducting oxide. Applied Physics Letters, 2004, 85(4): 684–686.

    Article  ADS  Google Scholar 

  18. Singh V.P., McClure J.C., Lush G., Wang W., Wang X., Thompson G., Clark E., Thin film CdTe-CdS heterojunction solar cells on lightweight metal substrates. Solar Energy Materials and Solar Cells, 1999, 59: 145–161.

    Article  Google Scholar 

  19. Gretener C., Perrenoud J., Kranz L., Kneer L., Schmitt R., Buecheler S., Tiwari A.N., CdTe/CdS thin film solar cells grown in substrate configuration. Progress in Photovoltaics: Research and Applications, 2013, 21(8): 1580–1586.

    Article  Google Scholar 

  20. Ehrmann N., Reineke-Koch R.J.T.S.F., Selectively coated high efficiency glazing for solar-thermal flat-plate collectors. Thin Solid Films, 2012, 520(12): 4214–4218.

    Article  ADS  Google Scholar 

  21. Compaan A.D., Gupta A., Lee S., Wang S., Drayton J., High efficiency, magnetron sputtered CdS/CdTe solar cells. Solar Energy, 2004, 77(6): 815–822.

    Article  ADS  Google Scholar 

  22. Compaan A.D., Gupta A., Lee S., Wang S., Drayton J.J.S.E., High efficiency, magnetron sputtered CdS/CdTe solar cells. Solar Energy, 2004, 77(6): 815–822.

    Article  ADS  Google Scholar 

  23. Gretener C., Perrenoud J., Kranz L., Baechler C., Yoon S., Romanyuk Y.E., Buecheler S., Tiwari A.N., Development of MoOx thin films as back contact buffer for CdTe solar cells in substrate configuration. Thin Solid Films, 2013, 535: 193–197.

    Article  ADS  Google Scholar 

  24. Tfcalc. Version 3.5, software spectra, Portland, 2019.

  25. Querry M.R., Optical constants of minerals and other materials from the millimeter to the ultraviolet. Chemical Research, Development & Engineering Center, US Army Armament Munitions Chemical Command, 1998.

  26. Cao F., McEnaney K., Chen G., Ren Z., A review of cermet-based spectrally selective solar absorbers. Energy & Environmental Science, 2014, 7(5): 1615–1627.

    Article  Google Scholar 

  27. Li Y., **ong C., Huang H., Peng X., Mei D., Li M., Liu G., Wu M., Zhao T., Huang B.J.A.M., 2D Ti3C2Tx MXenes: Visible black but infrared white materials. Advanced Materials, 2021, 33(41): 2103054.

    Article  Google Scholar 

  28. Moriaki Wakaki., Takehisa Shibuya., Keiei Kudo., Optical materials and applications. CRC press, Florida, 2017.

    Book  Google Scholar 

  29. Lin Q., Armin A., Nagiri R.C.R., Burn P.L., Meredith P., Electro-optics of perovskite solar cells. Nature Photonics, 2014, 9(2): 106–112.

    Article  ADS  Google Scholar 

  30. Hakeem A.A., Ali H., Abd El-Raheem M., Hasaneen M.J.O., Study the effect of type of substrates on the microstructure and optical properties of CdTe thin films. Optik, 2021, 225: 165390.

    Article  ADS  Google Scholar 

  31. Cetinkaya C., Cokduygulular E., Kinaci B., Guzelcimen F., Ozen Y., Sonmez N.A., Ozcelik S., Highly improved light harvesting and photovoltaic performance in CdTe solar cell with functional designed 1D-photonic crystal via light management engineering. Scientific Reports, 2022, 12(1): 11245.

    Article  ADS  Google Scholar 

  32. Romeo A., Artegiani E., Menossi D.J.S.E., Low substrate temperature CdTe solar cells: A review. Solar Energy, 2018, 175: 9–15.

    Article  ADS  Google Scholar 

  33. Kocer H., Butun S., Li Z., Aydin K.J.S.r., Reduced near-infrared absorption using ultra-thin lossy metals in Fabry-Perot cavities. Scientific reports, 2015, 5(1): 1–6.

    Article  Google Scholar 

  34. Kranz L., Gretener C., Perrenoud J., Schmitt R., Pianezzi F., La Mattina F., Blosch P., Cheah E., Chirila A., Fella C.M., Hagendorfer H., Jager T., Nishiwaki S., Uhl A.R., Buecheler S., Tiwari A.N., Do** of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil. Nature Communications, 2013, 4(1): 2306.

    Article  ADS  Google Scholar 

  35. McGott D.L., Kempe M.D., Glynn S., Bosco N., Barnes T.M., Haegel N.M., Wolden C.A., Reese M.O., Thermomechanical lift-off and recontacting of CdTe solar cells. ACS applied materials & interfaces, 2018, 10(51): 44854–44861.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC 52130601 and 52106276) and the Fundamental Research Funds for the Central Universities (WK5290000003). This work was partially conducted at the University of Science and Technology of China Center for Micro and Nanoscale Research and Fabrication. We appreciate the support of the Research Center for Multi-energy complementation and conversion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Zhao or Gang Pei.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Hu, K., Zhao, B. et al. Spectral Selectivity of CdTe Cells with Substrate Configuration for Photovoltaic/Thermal Applications. J. Therm. Sci. (2024). https://doi.org/10.1007/s11630-024-1979-z

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s11630-024-1979-z

Keywords

Navigation