Log in

Numerical Study on Thermoelectric Power Generator in Combustor

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Micro gas turbine is a typical distributed energy resource system. The temperature of the burning gas in the combustor reaches 1000 K or even more, which makes a huge temperature difference in the combustor an interesting topic for heat recovery. In this work, thermoelectric devices are used for heat recovery in the combustor of the micro gas turbine. A flow-thermal-electric multiple-physical numerical model is used for the combustor and thermoelectric device power generation system. The effect of the winglet vortex generators installed at the outer wall of the flame tube on the system performance is examined. The numerical results show that the best matching load is about 1.4 times the internal resistance which provides the maximum power output for the thermoelectric generator. Active cascade control of heat transfer enhancement elements on flame tube considering wall safety and conversion efficiency of thermoelectric generator under high temperature and large temperature drop is proposed. The numerical results show that the conversion efficiency of thermoelectric generator can be increased by more than 80%, and the average wall temperature can be reduced by 35 K by using non-uniform arrangement of the winglet vortex generators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

heat transfer area/mm2

c p :

specific heat/J·(kg·K)−1

D h :

hydraulic diameter of cold-side channel, mm

f :

friction factor

G k :

generation term

H :

height of cold-side channel, mm

h :

heat transfer coefficient/W·(m2·K)−1

h′:

height of winglet/mm

I :

loop current/A

J :

electrical current density vector/A·m−2

k :

turbulent kinetic energy/m2·s−2

L :

length of cold-side channel/mm

l :

length of winglet/mm

:

mass flow rate/kg·s−1

Nu :

Nusselt number

P :

output power/W

Q in :

heat transfer rate/W

R :

internal resistance/Ω

Re :

Reynolds number

R load :

load resistance/Ω

T :

temperature/K

u :

velocity vector/m·s−1

V :

voltage/V

W :

width of cold-side channel/mm

w :

width of winglet/mm

Δp :

pressure drop/Pa

ΔT :

temperature difference/K

Δt :

longitudinal pitch of winglet/mm

α :

Seebeck coefficient/V·K−1

β :

attack angle of winglet/(°)

γ :

filling factor

δ :

thickness/mm

η :

conversion efficiency/%

λ :

thermal conductivity/W·(m·K)−1

μ :

dynamic viscosity/Pa·s

ξ :

direction normal to the corresponding wall

ρ :

density/kg·m−3; electrical resistivity/Ω·m

ε :

dissipation rate/m2·s−3

ave:

average

c:

cold side

cl:

ceramic insulation layer

cu:

copper conductor layer

f:

fluid

ft:

flame tube

i :

sequence label of distance, i =1, 2, 3, …, 8

in:

inlet

max:

maximum

n:

N-type TE material

oc:

open circuit voltage

out:

outlet

p:

P-type TE material

W:

winglet

References

  1. Niu J., Tian Z., Zhu J., Lu Y., Implementation of a price-driven demand response in a distributed energy system with multi-energy flexibility measures. Energy Conversion and Management, 2020, 208: 112575.

    Article  Google Scholar 

  2. Zhang J., Cho H.J., Mago P.J., Zhang H.G., Yang F.B., Multi-objective particle swarm optimization (MOPSO) for a distributed energy system integrated with energy storage. Journal of Thermal Science, 2019, 28(6): 1221–1235.

    Article  ADS  Google Scholar 

  3. Razavi S.E., Rahimi E., Javadi M.S., Nezhad A.E., Lotfi M., Shafiekhah M., Catalao J.P.S., Impact of distributed generation on protection and voltage regulation of distribution systems: A review. Renewable and Sustainable Energy Reviews, 2019, 105: 157–167.

    Article  Google Scholar 

  4. Han D.J., Hao L., Yang J.F., Experimental investigations on vibration characteristics for bearing-rotor system of micro gas turbine. Proceedings of the 10th International Conference on Rotor Dynamics — IFToMM, Rio de Janeiro, Brazil, 2018, pp. 343–356. DOI: https://doi.org/10.1007/978-3-319-99272-3_24.

  5. Pilavachi P.A., Mini- and micro-gas turbines for combined heat and power. Applied Thermal Engineering, 2002, 22(18): 2003–2014.

    Article  Google Scholar 

  6. Rodgers C., Turbochargers to small gas turbines, 1997, ASME Paper 97-GT-200.

  7. Toshio N., Lessons learnt from the ultra-micro gas turbine development at University of Tokyo. Micro Gas Turbines, 2005, 14: 1–58.

    Google Scholar 

  8. McDonald C.F., Low-cost compact primary surface recuperator concept for microturbines. Applied Thermal Engineering, 2000, 20(5): 471–497.

    Article  Google Scholar 

  9. Loeser M., Redfern M.A., Modelling and simulation of a novel micro-scale combined feedstock biomass generation plant for grid-independent power supply. International Journal of Energy Research, 2010, 34(4): 303–320.

    Article  Google Scholar 

  10. Perna A., Minutillo M., Jannelli E., Jannelli E., Cigolotti V., Nam S.W., Yoon K.J., Performance assessment of a hybrid SOFC/MGT cogeneration power plant fed by syngas from a biomass down-draft gasifier. Applied Energy, 2018, 227: 80–91.

    Article  Google Scholar 

  11. Yazawa K., Fisher T.S., Groll E.A., Shakouri A., High exergetic modified brayton cycle with thermoelectric energy conversion. Applied Thermal Engineering, 2017, 114: 1366–1371.

    Article  Google Scholar 

  12. Bass J.C., Elsner N.B., Leavitt F.A., Performance of the 1 kW thermoelectric generator for diesel engines. AIP Conference Proceedings, 1994, 316(1): 295–298. DOI: https://doi.org/10.1063/1.46818.

    Article  ADS  Google Scholar 

  13. Cuce E., Cuce P.M., Guclu T., Besir A.B., On the use of nanofluids in solar energy applications. Journal of Thermal Science, 2020, 29(3): 513–534.

    Article  ADS  Google Scholar 

  14. Pan T., Gong T.R., Yang W., Wu Y.J., Numerical study on the thermal stress and its formation mechanism of a thermoelectric device. Journal of Thermal Science, 2018, 27(3): 249–258.

    Article  ADS  Google Scholar 

  15. Zhang Y.L., Wang X.W., Cleary M., Schoensee L., Kempf N., Richardson J., High-performance nanostructured thermoelectric generators for micro combined heat and power systems. Applied Thermal Engineering, 2016, 96: 83–87.

    Article  Google Scholar 

  16. Wang J., Song X.X., Li Y.L., Zhang C.Z., Modeling and analysis of thermoelectric generators for diesel engine exhaust heat recovery system. Journal of Energy Engineering, 2020, 146 (2): 04020002.

    Article  Google Scholar 

  17. He Z.M., Foo M.X., Yong D., Ma T., Hao Y., Zhang H., Ding D., Non-imaging optics for improving waste heat collection with thermoelectrics. ES Energy and Environment, 2019, 6: 78–84.

    Google Scholar 

  18. Tian H., Sun X.X., Jia Q., Liang X.Y., Shu G.Q. Wang X., Comparison and parameter optimization of a segmented thermoelectricgenerator by using the high temperature exhaust of a diesel engine. Energy, 2015, 84: 121–130.

    Article  Google Scholar 

  19. Meng J.H., Wang X.D., Chen W.H., Performance investigation and design optimization of athermoelectric generator applied in automobile exhaust waste heat recovery. Energy Conversionand Management, 2016, 120: 71–80.

    Article  Google Scholar 

  20. Zhou Z.G., Zhu D.S., Wu H.X., Zhang H.S., Modeling, experimental study on the heat transfer characteristics of thermoelectric generator. Journal of Thermal Science, 2013, 22(1): 48–54.

    Article  ADS  Google Scholar 

  21. Yu J.L., Zhao H., A numerical model for thermoelectric generator with the parallel-plate heat exchanger. Journal of Power Sources, 2007, 172(1): 428–434.

    Article  ADS  Google Scholar 

  22. Niu X., Yu J.L., Wang S.Z., Experimental study on low-temperature waste heat thermoelectric generator. Journal of Power Sources, 2009, 188(2): 621–626.

    Article  ADS  Google Scholar 

  23. Ma T., Qu Z.M., Yu X.F., Lu X., Chen Y.T., Wang Q.W., Numerical study and optimization of thermoelectric-hydraulic performance of a novel thermoelectric generator integrated recuperator. Energy, 2019, 174: 1176–1187.

    Article  Google Scholar 

  24. Lu X., Yu X.F., Qu Z.M., Wang Q.W., Ma T., Experimental investigation on thermoelectric generator with non-uniform hot-side heat exchanger for waste heat recovery. Energy Conversion and Management, 2017, 150: 403–414.

    Article  Google Scholar 

  25. Qiu K., Hayden A.C.S., Development of a thermoelectric self-powered residential heating system. Journal of Power Sources, 2008, 180(2): 884–889.

    Article  ADS  Google Scholar 

  26. Alanne K., Laukkanen T., Saari K., Jokisalo J., Analysis of a wooden pellet-fueled domestic thermoelectric cogeneration system. Applied Thermal Engineering, 2014, 63(1): 1–10.

    Article  Google Scholar 

  27. Wang F.S., Kong W.J., Wang B.R., Experimental study of combustion on a micro gas turbine combustor. Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air, Berlin, Germany, 2008, 3: 749–755. DOI: https://doi.org/10.1115/GT2008-50975.

    Article  Google Scholar 

  28. Angrist S.W., Direct energy conversion, third ed., Allyn and Bacon Inc., Boston, 1976.

    Google Scholar 

  29. Reddy B.V.K., Barry M., Li J., Chyu M.K., Three dimensional multiphysics coupled field analysis of an integrated thermoelectric device. Numerical Heat Transfer, Part A: Applications, 2012, 62(12): 933–947.

    Article  ADS  Google Scholar 

  30. Gomez M., Reid R., Ohara B., Lee H., Influence of electrical current variance and thermal resistances on optimum working conditions and geometry for thermoelectric energy harvesting. Journal of Applied Physics, 2013, 113(17): 174908.

    Article  ADS  Google Scholar 

  31. Yu X.F., Lu X., Wang Q.W., Ma T., Parametric study of thermoelectric power generators under large temperature difference conditions. Applied Thermal Engineering, 2018, 144: 647–657.

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (No. 52022080 and No. 51676155).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Wu, P., Lu, X. et al. Numerical Study on Thermoelectric Power Generator in Combustor. J. Therm. Sci. 31, 2124–2136 (2022). https://doi.org/10.1007/s11630-022-1662-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-022-1662-1

Keywords

Navigation