Log in

Cytotoxicity assay using a human pluripotent stem cell–derived cranial neural crest cell model

  • Report
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Cleft lip and palate are the most common congenital abnormalities that occur early in pregnancy. The majority of cranial mesenchyme is derived from cranial neural crest cells that differentiate into odontoblasts, cartilage, craniofacial bone, and connective tissue. A subset of these cells differentiates into cranial ganglia. We have previously reported an induction protocol of cranial neural crest cell-like cells from human pluripotent stem cells. This study tested detection of the cytotoxic sensitivities of dental materials, including titanium ions, palladium ions, and hydroxyethyl methacrylate, on the cell viability of induced cranial neural crest cell-like cells (iNC-LCs) derived from Tic human induced pluripotent stem cell (hiPSC) line. Further, the sensitivity was compared with those of human fetal lung fibroblastic cell line MRC-5, which is origin of Tic hiPSC, and osteoblastic cell line MC3T3-E1 which was derived from mouse calvaria. The results suggested that this cell-based assay system using iNC-LCs is a potential method for in vitro screening as an alternative to animal testing to predict toxic effects of dental materials on early craniofacial development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1.
Figure 2.

References

  • Achilleos A, Trainor PA (2012) Neural crest stem cells: discovery, properties and potential for therapy. Cell Res 22:288–304

    Article  CAS  Google Scholar 

  • Centers for Disease Control and Prevention (2019) Facts about cleft lip and cleft plate. https://www.cdc.gov/ncbddd/birthdefects/cleftlip.html. Cited 29 Jul 2020

  • Croom EL, Shafer TJ, Evans MV, Mundy WR, Eklund CR, Johnstone AF, Mack CM, Pegram RA (2015) Improving in vitro to in vivo extrapolation by incorporating toxicokinetic measurements: a case study of lindane-induced neurotoxicity. Toxicol Appl Pharmacol 283:9–19

    Article  CAS  Google Scholar 

  • Dixon MJ, Marazita ML, Beaty TH, Murray JC (2011) Cleft lip and palate: understanding genetic and environmental influences. Nat Rev Genet 12:167–178

    Article  CAS  Google Scholar 

  • Fukuda T, Takayama K, Hirata M, Liu YJ, Yanagihara K, Suga M, Mizuguchi H, Furue MK (2017) Isolation and expansion of human pluripotent stem cell-derived hepatic progenitor cells by growth factor defined serum-free culture conditions. Exp Cell Res 352:333–345

    Article  CAS  Google Scholar 

  • Fukuta M, Nakai Y, Kirino K, Nakagawa M, Sekiguchi K, Nagata S, Matsumoto Y, Yamamoto T, Umeda K, Heike T, Okumura N, Koizumi N, Sato T, Nakahata T, Saito M, Otsuka T, Kinoshita S, Ueno M, Ikeya M, Toguchida J (2014) Derivation of mesenchymal stromal cells from pluripotent stem cells through a neural crest lineage using small molecule compounds with defined media. PLoS One 9:e112291

    Article  Google Scholar 

  • Furue MK, Na J, Jackson JP, Okamoto T, Jones M, Baker D, Hata R, Moore HD, Sato JD, Andrews PW (2008) Heparin promotes the growth of human embryonic stem cells in a defined serum-free medium. Proc Natl Acad Sci U S A 105:13409–13414

    Article  CAS  Google Scholar 

  • Jacobs JP (1976) The status of human diploid cell strain MRC-5 as an approved substrate for the production of viral vaccines. J Biol Stand 4:97–99

    Article  CAS  Google Scholar 

  • Jacobs JP, Jones CM, Baille JP (1970) Characteristics of a human diploid cell designated MRC-5. Nature 227:168–170

    Article  CAS  Google Scholar 

  • Kodama HA, Amagai Y, Sudo H, Kasai S, Yamamoto S (1981) Establishment of a clonal osteogenic cell line from newborn mouse calvaria. Jap J Oral Biol 23:899–901

    Article  Google Scholar 

  • Kulesa PM, Bailey CM, Kasemeier-Kulesa JC, McLennan R (2010) Cranial neural crest migration: new rules for an old road. Dev Biol 344:543–554

    Article  CAS  Google Scholar 

  • Le Douarin NM, Dupin E (2003) Multipotentiality of the neural crest. Curr Opin Genet Dev 13:529–536

    Article  Google Scholar 

  • Makihira S, Mine Y, Nikawa H, Shuto T, Iwata S, Hosokawa R, Kamoi K, Okazaki S, Yamaguchi Y (2010) Titanium ion induces necrosis and sensitivity to lipopolysaccharide in gingival epithelial-like cells. Toxicol in Vitro 24:1905–1910

    Article  CAS  Google Scholar 

  • Makino H, Toyoda M, Matsumoto K, Saito H, Nishino K, Fukawatase Y, Machida M, Akutsu H, Uyama T, Miyagawa Y, Okita H, Kiyokawa N, Fu**o T, Ishikawa Y, Nakamura T, Umezawa A (2009) Mesenchymal to embryonic incomplete transition of human cells by chimeric OCT4/3 (POU5F1) with physiological co-activator EWS. Exp Cell Res 315:2727–2740

    Article  CAS  Google Scholar 

  • Margulis AV, Mitchell AA, Gilboa SM, Werler MM, Mittleman MA, Glynn RJ, Hernandez-Diaz S, National Birth Defects Prevention Study (2012) Use of topiramate in pregnancy and risk of oral clefts. Am J Obstet Gynecol 207:405.e1–405.e4057

    Article  CAS  Google Scholar 

  • Menendez L, Kulik MJ, Page AT, Park SS, Lauderdale JD, Cunningham ML, Dalton S (2013) Directed differentiation of human pluripotent cells to neural crest stem cells. Nat Protoc 8:203–212

    Article  CAS  Google Scholar 

  • Menendez L, Yatskievych TA, Antin PB, Dalton S (2011) Wnt signaling and a Smad pathway blockade direct the differentiation of human pluripotent stem cells to multipotent neural crest cells. Proc Natl Acad Sci U S A 108:19240–19245

    Article  CAS  Google Scholar 

  • Mimura S, Kimura N, Hirata M, Tateyama D, Hayashida M, Umezawa A, Kohara A, Nikawa H, Okamoto T, Furue MK (2011) Growth factor-defined culture medium for human mesenchymal stem cells. Int J Dev Biol 55:181–187

    Article  CAS  Google Scholar 

  • Mimura S, Suga M, Okada K, Kinehara M, Nikawa H, Furue MK (2016) Bone morphogenetic protein 4 promotes craniofacial neural crest induction from human pluripotent stem cells. Int J Dev Biol 60:21–28

    Article  CAS  Google Scholar 

  • Mine Y, Makihira S, Nikawa H, Murata H, Hosokawa R, Hiyama A, Mimura S (2010) Impact of titanium ions on osteoblast-, osteoclast- and gingival epithelial-like cells. J Prosthodont Res 54:1–6

    Article  Google Scholar 

  • Morikawa S, Mabuchi Y, Niibe K, Suzuki S, Nagoshi N, Sunabori T, Shimmura S, Nagai Y, Nakagawa T, Okano H, Matsuzaki Y (2009) Development of mesenchymal stem cells partially originate from the neural crest. Biochem Biophys Res Commun 379:1114–1119

    Article  CAS  Google Scholar 

  • Nagoshi N, Shibata S, Kubota Y, Nakamura M, Nagai Y, Satoh E, Morikawa S, Okada Y, Mabuchi Y, Katoh H, Okada S, Fukuda K, Suda T, Matsuzaki Y, Toyama Y, Okano H (2008) Ontogeny and multipotency of neural crest-derived stem cells in mouse bone marrow, dorsal root ganglia, and whisker pad. Cell Stem Cell 2:392–403

    Article  CAS  Google Scholar 

  • Noden DM, Trainor PA (2005) Relations and interactions between cranial mesoderm and neural crest populations. J Anat 207:575–601

    Article  Google Scholar 

  • Sakuma C, Imura H, Yamada T, Sugahara T, Hirata A, Ikeda Y, Natsume N (2018) Cleft palate formation after palatal fusion occurs due to the rupture of epithelial basement membranes. J Craniomaxillofac Surg 46:2027–2031

    Article  Google Scholar 

  • Santagati F, Rijli FM (2003) Cranial neural crest and the building of the vertebrate head. Nat Rev Neurosci 4:806–818

    Article  CAS  Google Scholar 

  • Sauka-Spengler T, Bronner-Fraser M (2008) A gene regulatory network orchestrates neural crest formation. Nat Rev Mol Cell Biol 9:557–568

    Article  CAS  Google Scholar 

  • Selleck MA, Scherson TY, Bronner-Fraser M (1993) Origins of neural crest cell diversity. Dev Biol 159:1–11

    Article  CAS  Google Scholar 

  • Suga M, Furue MK (2019) Neural crest cell models of development and toxicity: cytotoxicity assay using human pluripotent stem cell-derived cranial neural crest cell model. Methods Mol Biol (Clifton, N.J.), 1965: 35–48

  • Suga M, Hayashi Y, Furue MK (2017) In vitro models of cranial neural crest development toward toxicity tests: frog, mouse, and human. Oral Dis 23:559–565

    Article  CAS  Google Scholar 

  • Tetko IV, Tropsha A (2020) Joint virtual special issue on computational toxicology. J Chem Inf Model 60:1069–1071. https://doi.org/10.1021/acs.jcim

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Schulz TC, Sherrer ES, Dauphin DS, Shin S, Nelson AM, Ware CB, Zhan M, Song CZ, Chen X, Brimble SN, McLean A, Galeano MJ, Uhl EW, D'Amour KA, Chesnut JD, Rao MS, Blau CA, Robins AJ (2007) Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood 110:4111–4119

    Article  CAS  Google Scholar 

  • Yamada T, Mishima K, Fujiwara K, Imura H, Sugahara T (2006) Cleft lip and palate in mice treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin: a morphological in vivo study. Congenit Anom (Kyoto) 46:21–25

    Article  CAS  Google Scholar 

  • Yanagihara K, Liu Y, Kanie K, Takayama K, Kokunugi M, Hirata M, Fukuda T, Suga M, Nikawa H, Mizuguchi H, Kato R, Furue MK (2016) Prediction of differentiation tendency toward hepatocytes from gene expression in undifferentiated human pluripotent stem cells. Stem Cells Dev 25:1884–1897

    Article  CAS  Google Scholar 

Download references

Funding

This study was partially supported by grants-in-aid from the Ministry of Health, Labour and Welfare of Japan, Japan Agency for Medical Research and Development to M.K.F. (JP17bk0104011h0005), the Ministry of Education, Culture, Sports, Science and Technology of Japan to M.K.F. and M.S. (KAKENHI 15K11035); Y.M, M.S., H.N., and M.K.F (16H05535); and Y.M (17K17181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Mine.

Ethics declarations

Human iPSCs were used after approval by the institutional ethics review board at the National Institutes of Biomedical Innovation, Health and Nutrition (Approval number: iPS-3).

Additional information

Editor: Tetsuji Okamoto

Electronic supplementary material

ESM 1

(DOCX 2223 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mine, Y., Suga, M., Mimura, S. et al. Cytotoxicity assay using a human pluripotent stem cell–derived cranial neural crest cell model. In Vitro Cell.Dev.Biol.-Animal 56, 505–510 (2020). https://doi.org/10.1007/s11626-020-00491-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-020-00491-0

Keywords

Navigation