Log in

Minimal apparent diffusion coefficient in predicting the Ki-67 proliferation index of pancreatic neuroendocrine tumors

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the diagnostic performance of the minimal apparent diffusion coefficient (ADCmin) to distinguish between pancreatic neuroendocrine tumors (Pan-NETs) with low and high Ki-67 proliferation index values and to evaluate the relationship between ADCmin and the Ki-67 proliferation index.

Methods

Pre-operative magnetic resonance imaging data and postoperative Ki-67 proliferation index data of 42 patients with primary neuroendocrine tumor of the pancreas from November 2014 to March 2021 were included in this retrospective study. According to the Ki-67 proliferation index value, Pan-NETs were divided into a high-expression group (Ki-67 ≥ 10%, n = 17) and low-expression group (Ki-67 < 10%, n = 25), and mean ADC (ADCmean) and ADCmin values were compared between groups using receiver operating characteristic (ROC) curves to evaluate the performance of ADCmean and ADCmin in judging the expression level of Ki-67 proliferation index. The relationship between ADCmin and the Ki-67 proliferation index was also evaluated.

Results

The ADCmin was significantly higher in the low-expression group (Z = − 3.537, p < 0.01). The area under the ROC curve (AUC) for ADCmin was 0.825, which was higher than that for ADCmean (0.781). Using 1.32 × 10–3 mm2/s as the optimal discriminating threshold, the sensitivity, specificity, accuracy, and positive and negative predictive values of the two groups were 80%, 88.2%, 83.3%, 90%, and 75%, respectively. The ADCmin of Pan-NETs showed a significant negative correlation with the Ki-67 proliferation index (rs = − 0.634, p < 0.001).

Conclusion

The ADCmin is a potential imaging biomarker, which may be helpful for non-invasive preoperative prediction of the Ki-67 proliferation index of Pan-NETs and the subsequent planning of appropriate treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nagtegaal ID, Odze RD, Klimstra D, Paradis V, Rugge M, Schirmacher P, Washington KM, Carneiro F, Cree IA. The 2019 WHO classification of tumours of the digestive system. Histopathology. 2020;76(2):182–8. https://doi.org/10.1111/his.13975.

    Article  PubMed  Google Scholar 

  2. Pavel M, Öberg K, Falconi M, Krenning EP, Sundin A, Perren A, Berruti A. Gastroenteropancreatic neuroendocrine neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020;31(7):844–60. https://doi.org/10.1016/j.annonc.2020.03.304.

    Article  CAS  PubMed  Google Scholar 

  3. **anwang L, Lei H, Hong L, Juan D, Shenglin L, Caiqiang X, Yan H, Junlin Z. Apparent diffusion coefficient to evaluate adult intracranial ependymomas: relationship to Ki-67 proliferation index. J Neuroimaging. 2021;31(1):132–6. https://doi.org/10.1111/jon.12789.

    Article  PubMed  Google Scholar 

  4. Zhao S, Guo W, Tan R, Chen P, Li Z, Sun F, Shao G. Correlation between minimum apparent diffusion coefficient values and the histological grade of breast invasive ductal carcinoma. Oncol Lett. 2018;15(5):8134–40. https://doi.org/10.3892/ol.2018.8343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang J, Chen X, Chen D, Wang Z, Li S, Zhu W. Grading and proliferation assessment of diffuse astrocytic tumors with monoexponential, biexponential, and stretched-exponential diffusion-weighted imaging and diffusion kurtosis imaging. Eur J Radiol. 2018;109:188–95. https://doi.org/10.1016/j.ejrad.2018.11.003.

    Article  PubMed  Google Scholar 

  6. Murakami R, Hirai T, Kitajima M, Fukuoka H, Toya R, Nakamura H, Kuratsu J, Yamashita Y. Magnetic resonance imaging of pilocytic astrocytomas: usefulness of the minimum apparent diffusion coefficient (ADC) value for differentiation from high-grade gliomas. Acta Radiol. 2008;49(4):462–7. https://doi.org/10.1080/02841850801918555.

    Article  CAS  PubMed  Google Scholar 

  7. Matondang S, Ekawati A, Andrijono TH, Prihartono J. Minimal apparent diffusion coefficient value of the solid component to differentiate borderline and malignant ovarian epithelial tumours: a preliminary report. Pol J Radiol. 2020;85:e250–3. https://doi.org/10.5114/pjr.2020.95921.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pereira JA, Rosado E, Bali M, Metens T, Chao SL. Pancreatic neuroendocrine tumors: correlation between histogram analysis of apparent diffusion coefficient maps and tumor grade. Abdom Imaging. 2015;40(8):3122–8. https://doi.org/10.1007/s00261-015-0524-7.

    Article  PubMed  Google Scholar 

  9. Lee S, Kim SH, Hwang JA, Lee JE, Ha SY. Pre-operative ADC predicts early recurrence of HCC after curative resection. Eur Radiol. 2019;29(2):1003–12. https://doi.org/10.1007/s00330-018-5642-5.

    Article  PubMed  Google Scholar 

  10. Kim JH, Eun HW, Kim YJ, Han JK, Choi BI. Staging accuracy of MR for pancreatic neuroendocrine tumor and imaging findings according to the tumor grade. Abdom Imaging. 2013;38(5):1106–14. https://doi.org/10.1007/s00261-013-0011-y.

    Article  PubMed  Google Scholar 

  11. Gupta PK, Awasthi R, Singh S, Behari S, Maria Das KJ, Gupta RK, Kumar S. Value of minimum apparent diffusion coefficient on magnetic resonance imaging as a biomarker for predicting progression of disease following surgery and radiotherapy in glial tumors from a tertiary care center in Northern India. J Neurosci Rural Pract. 2017;8(2):185–93. https://doi.org/10.4103/0976-3147.203823.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sun X, Kaufman PD. Ki-67: more than a proliferation marker. Chromosoma. 2018;127(2):175–86. https://doi.org/10.1007/s00412-018-0659-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao S, Shao G, Chen P, Li L, Yang Y, Zhao X, Guo W. Diagnostic performance of minimum apparent diffusion coefficient value in differentiating the invasive breast cancer and ductal carcinoma in situ. J Cancer Res Ther. 2019;15(4):871–5. https://doi.org/10.4103/jcrt.JCRT_607_18.

    Article  PubMed  Google Scholar 

  14. Hirano M, Satake H, Ishigaki S, Ikeda M, Kawai H, Naganawa S. Diffusion-weighted imaging of breast masses: comparison of diagnostic performance using various apparent diffusion coefficient parameters. AJR Am J Roentgenol. 2012;198(3):717–22. https://doi.org/10.2214/ajr.11.7093.

    Article  PubMed  Google Scholar 

  15. Scarpa A, Mantovani W, Capelli P, Beghelli S, Boninsegna L, Bettini R, Panzuto F, Pederzoli P, delle Fave G, Falconi M. Pancreatic endocrine tumors: improved TNM staging and histopathological grading permit a clinically efficient prognostic stratification of patients. Modern Pathol. 2010;23(6):824–33. https://doi.org/10.1038/modpathol.2010.58.

    Article  CAS  Google Scholar 

  16. Kim KW, Krajewski KM, Nishino M, Jagannathan JP, Shinagare AB, Tirumani SH, Ramaiya NH. Update on the management of gastroenteropancreatic neuroendocrine tumors with emphasis on the role of imaging. AJR Am J Roentgenol. 2013;201(4):811–24. https://doi.org/10.2214/ajr.12.10240.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bammer R. Basic principles of diffusion-weighted imaging. Eur J Radiol. 2003;45(3):169–84. https://doi.org/10.1016/s0720-048x(02)00303-0.

    Article  PubMed  Google Scholar 

  18. Wang Y, Chen ZE, Yaghmai V, Nikolaidis P, McCarthy RJ, Merrick L, Miller FH. Diffusion-weighted MR imaging in pancreatic endocrine tumors correlated with histopathologic characteristics. J Magn Reson Imaging. 2011;33(5):1071–9. https://doi.org/10.1002/jmri.22541.

    Article  PubMed  Google Scholar 

  19. Lotfalizadeh E, Ronot M, Wagner M, Cros J, Couvelard A, Vullierme MP, Allaham W, Hentic O, Ruzniewski P, Vilgrain V. Prediction of pancreatic neuroendocrine tumour grade with MR imaging features: added value of diffusion-weighted imaging. Eur Radiol. 2017;27(4):1748–59. https://doi.org/10.1007/s00330-016-4539-4.

    Article  PubMed  Google Scholar 

  20. Kang Y, Choi SH, Kim YJ, Kim KG, Sohn CH, Kim JH, Yun TJ, Chang KH. Gliomas: Histogram analysis of apparent diffusion coefficient maps with standard- or high-b-value diffusion-weighted MR imaging–correlation with tumor grade. Radiology. 2011;261(3):882–90. https://doi.org/10.1148/radiol.11110686.

    Article  PubMed  Google Scholar 

  21. Harimoto N, Araki K, Hoshino K, Muranushi R, Hagiwara K, Ishii N, Tsukagoshi M, Igarashi T, Watanabe A, Kubo N, Tomonaga H, Higuchi T, Tsushima Y, Ikota H, Shirabe K. Diffusion-weighted mri predicts lymph node metastasis and tumor aggressiveness in resectable pancreatic neuroendocrine tumors. World J Surg. 2020;44(12):4136–41. https://doi.org/10.1007/s00268-020-05736-3.

    Article  PubMed  Google Scholar 

  22. Surov A, Meyer HJ, Wienke A. Correlation between minimum apparent diffusion coefficient (ADC(min)) and tumor cellularity: a meta-analysis. Anticancer Res. 2017;37(7):3807–10. https://doi.org/10.21873/anticanres.11758.

    Article  CAS  PubMed  Google Scholar 

  23. Ren H, Mori N, Hamada S, Takasawa C, Mugikura S, Masamune A, Takase K. Effective apparent diffusion coefficient parameters for differentiation between mass-forming autoimmune pancreatitis and pancreatic ductal adenocarcinoma. Abdom Radiol (New York). 2021;46(4):1640–7. https://doi.org/10.1007/s00261-020-02795-x.

    Article  Google Scholar 

  24. Kulali F, Semiz-Oysu A, Demir M, Segmen-Yilmaz M, Bukte Y. Role of diffusion-weighted MR imaging in predicting the grade of nonfunctional pancreatic neuroendocrine tumors. Diagn Interv Imaging. 2018;99(5):301–9. https://doi.org/10.1016/j.diii.2017.10.012.

    Article  CAS  PubMed  Google Scholar 

  25. Baur AD, Pavel M, Prasad V, Denecke T. Diagnostic imaging of pancreatic neuroendocrine neoplasms (pNEN): tumor detection, staging, prognosis, and response to treatment. Acta Radiol. 2016;57(3):260–70. https://doi.org/10.1177/0284185115579932.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China (81772006).

Author information

Authors and Affiliations

Authors

Contributions

YX conceptualization, methodology, software, writing—original draft. SZ methodology, writing—original draft. XL resources, investigation, revision. XH statistical analysis. QZ methodology, validation. YL visualization, software. QN pathological interpretation. JZ conceptualization, methodology, supervision, funding acquisition. Conceptualization YX and JZ. Writing—original draft preparation YX and SZ. Writing—review and editing QZ, YL, XL, PT, LX and JZ. Statistical analysis XH. Pathological interpretation QN. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Junlin Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

The study was approved by the Institutional Review Board, and informed consent was waived due to retrospective analysis of the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yi**g **e and Shipeng Zhang contributed equally to this work.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**e, Y., Zhang, S., Liu, X. et al. Minimal apparent diffusion coefficient in predicting the Ki-67 proliferation index of pancreatic neuroendocrine tumors. Jpn J Radiol 40, 823–830 (2022). https://doi.org/10.1007/s11604-022-01262-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-022-01262-5

Keywords

Navigation