Log in

Coronary artery changes in congenital coronary-cameral fistulas evaluated by computed tomographic angiography

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

A Correction to this article was published on 24 July 2023

This article has been updated

Abstract

Purpose

The study sought to determine coronary artery diameter in congenital coronary-cameral fistula (cCCF), factors associated with coronary artery aneurysm, coronary artery changes after fistula closure, and computed tomographic (CT) findings after treatment.

Materials and methods

We retrospectively reviewed CT findings of the cCCF for origins, terminations, fistula length, complexities, and Sakakibara classification. Coronary artery diameter was expressed as coronary artery Z score. Fistula features associated with coronary artery aneurysm were analyzed. Post-fistula closures were analyzed for coronary artery dilatation, coronary thrombosis, complete fistula closure, and fistula thrombosis.

Results

Twenty-five patients (median age 33 months, interquartile range, IQR 25–48) were included. Coronary feeders and terminations were frequently right coronary artery (48%) and right ventricle (56%), respectively. Fistula aneurysm occurred in 52% of cases. Mean coronary artery Z score was 13.03 ± 6.36 with a high incidence of giant coronary artery aneurysm (68%). We found no statistically significant risk factors associated with coronary artery aneurysm (p value range 0.075–0.370). Median duration of the follow-up CT after closure of the fistulas was 6.4 months (IQR 5.0–8.7). Coronary artery Z score significantly decreased by 0.82 (IQR 0.28–1.35), p = 0.006 and coronary thrombosis occurred in 23% of cases during follow-up.

Conclusions

Large coronary aneurysm is common in cCCF. No characteristic feature of the fistula influencing coronary artery aneurysm is identified. There is a diminution in coronary artery Z score after fistula closure. Coronary thrombosis is a major complication after treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

Abbreviations

cCCF:

Congenital coronary-cameral fistula

CTCA:

Computed tomographic coronary angiography

DLP:

Dose-length product

LAD:

Left anterior descending artery

LCx:

Left circumflex artery

LMCA:

Left main coronary artery

RCA:

Right coronary artery

TCC:

Transcatheter closure

References

  1. Yun G, Nam TH, Chun EJ. Coronary artery fistulas: pathophysiology, imaging findings, and management. Radiographics. 2018;38:688–703.

    Article  PubMed  Google Scholar 

  2. Ogden JA. Congenital anomalies of the coronary arteries. Am J Cardiol. 1970;25:474–9.

    Article  CAS  PubMed  Google Scholar 

  3. Latson LA. Coronary artery fistulas: how to manage them. Catheter Cardiovasc Interv. 2007;70:110–6.

    Article  PubMed  Google Scholar 

  4. Shiga Y, Tsuchiya Y, Yahiro E, Kodama S, Kotaki Y, Shimoji E, et al. Left main coronary trunk connecting into right atrium with an aneurysmal coronary artery fistula. Int J Cardiol. 2008;123:e28-30.

    Article  PubMed  Google Scholar 

  5. Shah AH, Leventhal A, Osten M, Benson L, Horlick E. Coronary artery fistulae: indications for treatment and technical considerations. J Struct Heart Dsc. 2016;2:47–57.

    Google Scholar 

  6. Challoumas D, Pericleous A, Dimitrakaki IA, Danelatos C, Dimitrakakis G. Coronary arteriovenous fistulae: a review. Int J Angiol. 2014;23(1):1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sharma A, Pandey NN, Kumar S. Imaging of coronary artery fistulas by multidetector CT angiography using third generation dual source CT scanner. Clin Imaging. 2019;53:89–96.

    Article  PubMed  Google Scholar 

  8. Haycock GB, Schwartz GJ, Wisotsky DH. Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J Pediatr. 1978;93:62–6.

    Article  CAS  PubMed  Google Scholar 

  9. Trattner S, Chelliah A, Prinsen P, Ruzal-Shapiro CB, Xu Y, Jambawalikar S, et al. Estimating effective dose of radiation from pediatric cardiac CT angiography using a 64-MDCT scanner: new conversion factors relating dose-length product to effective dose. AJR Am J Roentgenol. 2017;208:585–94.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Qureshi SA. Coronary arterial fistulas. Orphanet J Rare Dis. 2006;1:51.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Díaz-Zamudio M, Bacilio-Pérez U, Herrera-Zarza MC, Meave-González A, Alexanderson-Rosas E, Zambrana-Balta GF, et al. Coronary artery aneurysms and ectasia: role of coronary CT angiography. Radiographics. 2009;29:1939–54.

    Article  PubMed  Google Scholar 

  12. Sakakibara S, Yokoyama M, Takao A, Nogi M, Gomi H. Coronary arteriovenous fistula nine operated cases. Am Heart J. 1966;72:307–14.

    Article  CAS  PubMed  Google Scholar 

  13. Kobayashi T, Fuse S, Sakamoto N, Mikami M, Ogawa S, Hamaoka K, et al. A new Z score curve of the coronary arterial internal diameter using the Lambda-Mu-Sigma method in a pediatric population. J Am Soc Echocardiogr. 2016;29:794-801.e29.

    Article  PubMed  Google Scholar 

  14. McCrindle BW, Rowley AH, Newburger JW, Burns JC, Bolger AF, Gewitz M, et al. Diagnosis, treatment, and long-term management of kawasaki disease: a scientific statement for health professionals from the american heart association. Circulation. 2017;135:e927–99.

    Article  PubMed  Google Scholar 

  15. Yamanaka O, Hobbs RE. Coronary artery anomalies in 126,595 patients undergoing coronary arteriography. Cathet Cardiovasc Diagn. 1990;2:28–40.

    Article  Google Scholar 

  16. Vavuranakis M, Bush CA, Boudoulas H. Coronary artery fistulas in adults: incidence, angiographic characteristics, natural history. Cathet Cardiovasc Diagn. 1995;35:116–20.

    Article  CAS  PubMed  Google Scholar 

  17. Sapin P, Frantz E, Jain A, Nichols TC, Dehmer GJ. Coronary artery fistula: an abnormality affecting all age groups. Medicine (Baltimore). 1990;69:101–13.

    Article  CAS  PubMed  Google Scholar 

  18. Reddy K, Gupta M, Hamby RI. Multiple coronary arteriosystemic fistulas. Am J Cardiol. 1974;33:304–6.

    Article  CAS  PubMed  Google Scholar 

  19. Said SAM, Lam J, van der Werf T. Solitary coronary artery fistulas: a congenital anomaly in children and adults. A contemporary review. Congenit Heart Dis. 2006;1(3):63–76.

    Article  PubMed  Google Scholar 

  20. Fernandes ED, Kadivar H, Hallman GL, Reul GJ, Ott DA, Cooley DA. Congenital malformations of the coronary arteries: the Texas Heart Institute experience. Ann Thorac Surg. 1992;54:732–40.

    Article  CAS  PubMed  Google Scholar 

  21. Levin DC, Fellows KE, Abrams HL. Hemodynamically significant primary anomalies of the coronary arteries. Angiogr Asp Circ. 1978;58:25–34.

    Article  CAS  Google Scholar 

  22. Lin FC, Chang HJ, Chern MS, Wen MS, Yeh SJ, Wu D. Multiplane transesophageal echocardiography in the diagnosis of congenital coronary artery fistula. Am Heart J. 1995;130:1236–44.

    Article  CAS  PubMed  Google Scholar 

  23. Roberts WC. Major anomalies of coronary arterial origin seen in adulthood. Am Heart J. 1986;111:941–63.

    Article  CAS  PubMed  Google Scholar 

  24. Reddy G, Davies JE, Holmes DR, Schaff HV, Singh SP, Alli OO. Coronary artery fistulae. Circ Cardiovasc Interv. 2015. https://doi.org/10.1161/CIRCINTERVENTIONS.115.003062.

    Article  PubMed  Google Scholar 

  25. Gowda ST, Forbes TJ, Singh H, Kovach JA, Prieto L, Latson LA, et al. Remodeling and thrombosis following closure of coronary artery fistula with review of management: large distal coronary artery fistula–to close or not to close? Catheter Cardiovasc Interv. 2013;82:132–42.

    Article  PubMed  Google Scholar 

  26. Lo MH, Lin IC, Hsieh KS, Huang CF, Chien SJ, Kuo HC, et al. Mid- to long-term follow-up of pediatric patients with coronary artery fistula. J Formos Med Assoc. 2016;115:571–6.

    Article  PubMed  Google Scholar 

  27. Jaffe RB, Glancy DL, Epstein SE, Brown BG, Morrow AG. Coronary arterial-right heart fistulae long-term observations in seven patients. Circulation. 1973;47:133–43.

    Article  CAS  PubMed  Google Scholar 

  28. Gowda ST, Latson LA, Kutty S, Prieto LR. Intermediate to long-term outcome following congenital coronary artery fistulae closure with focus on thrombus formation. Am J Cardiol. 2011;107:302–8.

    Article  PubMed  Google Scholar 

  29. Urrutia-S CO, Falaschi G, Ott DA, Cooley DA. Surgical management of 56 patients with congenital coronary fistulas. Ann Thrac Surg. 1983;35:300–7.

    Article  CAS  Google Scholar 

  30. Chandra N, Sarkar A, Pande A. Large congenital coronary arteriovenous fistula between the left main coronary artery and right superior vena cava, associated with aneurysmal dilatation of the left main coronary artery: rare case report. Cardiol Young. 2015;25:143–5.

    Article  PubMed  Google Scholar 

  31. Inoue H, Ueno M, Yamamoto H, Matsumoto K, Tao K, Sakata R. Surgical treatment of coronary artery aneurysm with coronary artery fistula. Ann Thorac Cardiovasc Surg. 2009;15:198–202.

    PubMed  Google Scholar 

  32. Valente AM, Lock JE, Gauvreau K, Rodriguez-Huertas E, Joyce C, Armsby L, et al. Predictors of long-term adverse outcomes in patients with congenital coronary artery fistulae. Circ Cardiovasc Interv. 2010;3:134–9.

    Article  PubMed  Google Scholar 

  33. Yamasaki Y, Kawanami S, Kamitani T, Sagiyama K, Shin S, Hino T, et al. Free-breathing 320-row computed tomographic angiography with low-tube voltage and hybrid iterative reconstruction in infants with complex congenital heart disease. Clin Imaging. 2018;50:147–56.

    Article  PubMed  Google Scholar 

  34. Yamasaki Y, Kamitani T, Sagiyama K, Matsuura Y, Hida T, Nagata H. Model-based iterative reconstruction for 320-detector row CT angiography reduces radiation exposure in infants with complex congenital heart disease. Diagn Interv Radiol. 2021;27:42–9.

    Article  PubMed  Google Scholar 

Download references

Funding

The authors declared that they have not received any grants or other funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvipaporn Siripornpitak.

Ethics declarations

Conflicts of interest

The authors of this manuscript have no conflicts of interest.

Ethical approval

The study was approved by the institutional Human Research Ethics Committee, Faculty of Medicine, Ramathibodi Hospital, Mahidol University. All procedures performed in this studies were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siripornpitak, S., Sriprachyakul, A., Promphan, W. et al. Coronary artery changes in congenital coronary-cameral fistulas evaluated by computed tomographic angiography. Jpn J Radiol 39, 1149–1158 (2021). https://doi.org/10.1007/s11604-021-01164-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-021-01164-y

Keywords

Navigation