Log in

Building the carbonate pore-type classifier for well logging via the blended training dataset

  • Research Article - Applied Geophysics
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

The exploration of carbonate rocks has outstanding economic benefits, as well as facing the extreme challenge of reservoir characterization. This article has proposed a data-based description scheme generalizing carbonate pore-type characteristics from both laboratory measurements and theoretical predictions to the well logging dataset. Firstly, in the feature space of elastic properties, we employed the supervised machine learning (ML) algorithm to convert this pore-type classification process from a typical nonlinear inversion to sample label allocation problem. Secondly, to alleviate the inherent scale gaps between data sources, virtual samples were randomly mixed into the laboratory measured dataset. Through inheriting or mimicking statistical elastic features of limited core samples, the new built training dataset could improve the overall sample richness and thus help the ML algorithms making better identification decisions. On the one hand, this scheme was verified by 74 carbonate samples. In the feature space of high dimensions, the blended dataset trained radial basis function support vector machine accurately separated different carbonate pore systems. Moreover, using logging curves of a carbonate gas field, we verified the generalization capability of this scheme over unbalanced data scales. Searching skills were used to optimize model and classifier setups according logging curves of a specific interval. Finally, with the help of the vertical label distributions, logging elastic response modes and historical pore evolution footprints were further studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Avseth P, Mukerji T, Mavko G et al (2010) Rock-physics diagnostics of depositional texture, diagenetic alterations, and reservoir heterogeneity in high-porosity siliciclastic sediments and rocks—a review of selected models and suggested work flows. Geophysics 75(5):A31–A47

    Article  Google Scholar 

  • Baechle G, Colpaert A, Eberli G et al (2008) Effects of microporosity on sonic velocity in carbonate rocks. Lead Edge 27(8):1012–1018

    Article  Google Scholar 

  • Berryman JG (1995) Mixture theories for rock properties, rock physics and phase relations: a handbook of physical constants. Am Geophys Union 3:205–228

    Google Scholar 

  • Berryman JG, Pride SR, Wang HF (2002) A differential scheme for elastic properties of rocks with dry or saturated cracks. Geophys J Int 151:597–611

    Article  Google Scholar 

  • Brigaud B, Durlet C, Deconinck JF et al (2009) Facies and climate/environmental changes recorded on a carbonate ramp: a sedimentological and geochemical approach on middle Jurassic carbonates (Paris basin, france). Sed Geol 222(3–4):181–206

    Article  Google Scholar 

  • Choquette PA, Pray LC (1970) Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG Bull 54(2):207–250

    Google Scholar 

  • Cortes C, Vapnik V (1995) Support vector networks. Machin Learn 20(3):273–297

    Google Scholar 

  • Dietrich R, Opper M, Sompolinsky H (2008) Statistical mechanics of support vector networks. Phys Rev Lett 82(14):2975–2978

    Article  Google Scholar 

  • Dou Q, Sun Y, Sullivan C (2011) Rock-physics-based carbonate pore type characterization and reservoir permeability heterogeneity evaluation, upper San Andres reservoir, Permian Basin, west Texas. J Appl Geophys 74(1):8–18

    Article  Google Scholar 

  • Eberli GP, Baechle GT, Anselmetti FS et al (2003) Factors controlling elastic properties in carbonate sediments and rocks. Lead Edge 22:654–660

    Article  Google Scholar 

  • Huang Q, Dou Q, Jiang Y et al (2017) An integrated approach to quantifying geological controls on carbonate pore types and permeability, Puguang gas field. China Interpret 5(4):1–49

    Google Scholar 

  • Keys RG, Xu S (2002) An approximation for the Xu-white velocity model. Geophysics 67:1406–1414

    Article  Google Scholar 

  • Kumar M, Han DH (2005) Pore shape effect on elastic properties of carbonate rocks. SEG Tech Program Expand Abstr 24:1477

    Google Scholar 

  • Kuster GT, Toksöz MN (1974) Velocity and attenuation of seismic waves in two-phase media, part 1, theoretical formulations. Geophysics 39:587–606

    Article  Google Scholar 

  • Li H, Zhang J (2010) Modulus ratio of dry rock based on differential effective-medium theory. Geophysics 75(2):N43

    Article  Google Scholar 

  • Li B, Shen H, Qu S et al (2018) Tight carbonate reservoir characterization based on the modified rock physics model. J Appl Geophys 159:374–385

    Article  Google Scholar 

  • Mollajan A, Memarian H (2016) Rock physics-based carbonate pore type identification using Parzen classifier. J Petrol Sci Eng 145:205–212

    Article  Google Scholar 

  • Nur AM, Mavko G, Dvorkin J et al (2000) Critical porosity, a key to relating physical properties to porosity in rocks. Lead Edge 17:878–881

    Google Scholar 

  • Regnet JB, Robion P, David C et al (2015) Acoustic and reservoir properties of microporous carbonate rocks: Implication of micrite particle size and morphology. J Geophys Res 120(2):790–811

    Article  Google Scholar 

  • Sayers CM (2008) The elastic properties of carbonates. Lead Edge 27:1020–1024

    Article  Google Scholar 

  • Song C, Alkhalifah T (2020) An efficient wavefield inversion for transversely isotropic media with a vertical axis of symmetry. Geophysics 2020:1–51

    Google Scholar 

  • Stadtmuller M (2019) Well logging interpretation methodology for carbonate formation fracture system properties determination. Acta Geophys 67(6):1933–1943

    Article  Google Scholar 

  • Sun Y (2004) Pore structure effects on elastic wave propagation in rocks: AVO modelling. J Geophys Eng 1(4):268–276

    Article  Google Scholar 

  • Vanorio T, Mavko G (2011) Laboratory measurements of the acoustic and transport properties of carbonate rocks and their link with the amount of microcrystalline matrix. Geophysics 76(4):E105

    Article  Google Scholar 

  • Weger RJ, Eberli GP, Baechle GT et al (2009) Quantification of pore structure and its effect on sonic velocity and permeability in carbonates. AAPG Bull 10(10):1297–1317

    Article  Google Scholar 

  • Xu S, Payne MA (2009) Modeling elastic properties in carbonate rocks. Lead Edge 28:66–74

    Article  Google Scholar 

  • Xu S, White RE (1995) A new velocity model for clay-sand mixtures. Geophys Prospect 43:91–118

    Article  Google Scholar 

  • Yin X, Hua S, Zong Z (2016) A decoupling approach for differential equivalent equations based on linear approximation. Oil Geophys Prospect 51(2):281–287

    Google Scholar 

  • Zhang J, Li H, Yao F (2012) Rock critical porosity inversion and S-wave velocity prediction. Appl Geophys 9(1):57–64

    Article  Google Scholar 

  • Zhao L, Nasser M, Han D (2013) Quantitative geophysical pore type characterization and geological implications in carbonate reservoir. Geophys Prospect 61(4):827–841

    Article  Google Scholar 

Download references

Acknowledgements

This article is supported by the Scientific Research Programs granted by the Department of Science and Technology of Jilin Province, China (grant No. 20190103140JH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si Wenpeng.

Additional information

Communicated by Michal Malinowski (CO-EDITOR-IN-CHIEF)/Jadwiga Anna Jarzyna, prof (ASSOCIATE EDITOR).

Appendix: Equivalent elastic modulus of multiple pore-type materials

Appendix: Equivalent elastic modulus of multiple pore-type materials

Assume n = Km/Gm and m = n(P*i− Q*i). Polarization factors P and Q are decomposed as primary and secondary terms P0(n), Q0(n) and P1(m, n) depending on n and (m, n). For penny-shaped pores, Li and Zhang (2010) proofed parameter m satisfying

$$ P^{{{*}i}} - Q^{{{*}i}} = - \frac{1}{5} + \frac{{{{K^{*} } \mathord{\left/ {\vphantom {{K^{*} } {G^{*} \left( {{{3K^{*} } \mathord{\left/ {\vphantom {{3K^{*} } {G^{*} }}} \right. \kern-\nulldelimiterspace} {G^{*} }} + 4} \right)}}} \right. \kern-\nulldelimiterspace} {G^{*} \left( {{{3K^{*} } \mathord{\left/ {\vphantom {{3K^{*} } {G^{*} }}} \right. \kern-\nulldelimiterspace} {G^{*} }} + 4} \right)}}}}{{\pi \alpha \left( {{{3K^{*} } \mathord{\left/ {\vphantom {{3K^{*} } {G^{*} }}} \right. \kern-\nulldelimiterspace} {G^{*} }} + 1} \right)}} - \frac{{4\left( {{{3K^{*} } \mathord{\left/ {\vphantom {{3K^{*} } {G^{*} }}} \right. \kern-\nulldelimiterspace} {G^{*} }} + 4} \right)}}{{15\pi \alpha \left( {{{3K^{*} } \mathord{\left/ {\vphantom {{3K^{*} } {G^{*} }}} \right. \kern-\nulldelimiterspace} {G^{*} }} + 1} \right)}} - \frac{{8\left( {{{3K^{*} } \mathord{\left/ {\vphantom {{3K^{*} } {G^{*} }}} \right. \kern-\nulldelimiterspace} {G^{*} }} + 4} \right)}}{{15\pi \alpha \left( {{{3K^{*} } \mathord{\left/ {\vphantom {{3K^{*} } {G^{*} }}} \right. \kern-\nulldelimiterspace} {G^{*} }} + 2} \right)}} $$
(12)

Hence, decoupled DEM solution of dry rock matrix bulk and shear moduli is

$$ \left\{ \begin{gathered} K_{{\text{d}}} = K_{{\text{m}}} (1 - \varphi )^{{P_{{^{0} }} + P_{{^{1} }} }} e^{{P_{{^{1} }} \varphi }} \hfill \\ G_{{\text{d}}} = G_{{\text{m}}} (1 - \varphi )^{{Q_{{^{0} }} + Q_{{^{1} }} }} e^{{Q_{{^{1} }} \varphi }} \hfill \\ \end{gathered} \right. $$
(13)

Transforming Eq. 13 to a first order Taylor expansion, we get

$$ \left\{ \begin{aligned} K_{{\text{d}}} &= K_{{\text{m}}} (1 - \varphi )^{{P_{{^{0} }} + P_{{^{1} }} }} e^{{P_{{^{1} }} \varphi }}\\& \approx K_{{\text{m}}} (1 - \varphi )^{{P_{{^{0} }} }} (1 - \varphi )^{{P_{{^{1} }} }} (1 - \varphi )^{{{ - }P_{{^{1} }} }} \\&= K_{{\text{m}}} (1 - \varphi )^{{P_{{^{0} }} }} \hfill \\ G_{{\text{d}}} &= G_{{\text{m}}} (1 - \varphi )^{{Q_{{^{0} }} + Q_{{^{1} }} }} e^{{Q_{{^{1} }} \varphi }} \\&\approx G_{{\text{m}}} (1 - \varphi )^{{Q_{{^{0} }} }} (1 - \varphi )^{{Q_{{^{1} }} }} (1 - \varphi )^{{{ - }Q_{{^{1} }} }} \\&= G_{{\text{m}}} (1 - \varphi )^{{Q_{{^{0} }} }} \hfill \\ \end{aligned} \right. $$
(14)

Now, considering N components pore system, we use a continuous division process replacing host modulus by last porous matrix modulus from i = N to 1. The bulk modulus K*i is derived from K*i−1,

$$ \begin{gathered} K_{{_{{\text{d}}} }}^{ * i} = K^{ * i - 1} (1 - v^{{_{i} }} \varphi )^{{P_{0}^{ * i} + P_{1}^{ * i} }} e^{{P_{0}^{ * i} }} \hfill \\ K_{{_{{\text{d}}} }}^{ * i} \approx K^{ * i - 1} (1 - \varphi )^{{v^{{_{i} }} (P_{0}^{ * i} + P_{1}^{ * i} )}} e^{{P_{0}^{i} }} = K_{{\text{m}}} (1 - \varphi )^{{\sum\limits_{i = 1}^{N} {v^{{_{i} }} (P_{0}^{ * i} + P_{1}^{ * i} )} }} e^{{\sum\limits_{i = 1}^{N} {v^{{_{i} }} P_{1}^{ * i} } }} \hfill \\ \end{gathered} $$
(15)

Shear modulus can be derived in the same way. Therefore, we get a decoupled DEM solution for the multiple pore-type materials (i.e., carbonate rocks)

$$ \left\{ \begin{gathered} K_{{_{{{\text{dry}}}} }}^{ * i} = K_{{\text{m}}} (1 - \varphi )^{{\sum\limits_{i = 1}^{N} {v^{{_{i} }} (P_{0}^{i} + P_{1}^{i} )} }} e^{{\varphi \sum\limits_{i = 1}^{N} {v^{{_{i} }} P_{1}^{i} } }} \hfill \\ G_{{_{{{\text{dry}}}} }}^{ * i} = G_{{\text{m}}} (1 - \varphi )^{{\sum\limits_{i = 1}^{N} {v^{{_{i} }} (Q_{0}^{i} + Q_{1}^{i} )} }} e^{{\varphi \sum\limits_{i = 1}^{N} {v^{{_{i} }} Q_{1}^{i} } }} \hfill \\ \end{gathered} \right. $$
(16)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Si, W., Shen, H. et al. Building the carbonate pore-type classifier for well logging via the blended training dataset. Acta Geophys. 69, 77–94 (2021). https://doi.org/10.1007/s11600-020-00516-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-020-00516-y

Keywords

Navigation