Log in

The Role of Adipose Tissue-derived Exosomes in Chronic Metabolic Disorders

  • Review
  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Excessive fat deposition in obese subjects promotes the occurrence of metabolic diseases, such as type 2 diabetes mellitus (T2DM), cardiovascular diseases, and non-alcoholic fatty liver disease (NAFLD). Adipose tissue is not only the main form of energy storage but also an endocrine organ that not only secretes adipocytokines but also releases many extracellular vesicles (EVs) that play a role in the regulation of whole-body metabolism. Exosomes are a subtype of EVs, and accumulating evidence indicates that adipose tissue exosomes (AT Exos) mediate crosstalk between adipose tissue and multiple organs by being transferred to targeted cells or tissues through paracrine or endocrine mechanisms. However, the roles of AT Exos in crosstalk with metabolic organs remain to be fully elucidated. In this review, we summarize the latest research progress on the role of AT Exos in the regulation of metabolic disorders. Moreover, we discuss the potential role of AT Exos as biomarkers in metabolic diseases and their clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tziomalos K, Athyros VG, Karagiannis A, et al. Endothelial dysfunction in metabolic syndrome: prevalence, pathogenesis and management. Nutr Metab Cardiovasc Dis, 2010,20(2):140–146

    Article  CAS  PubMed  Google Scholar 

  2. Ouchi N, Parker JL, Lugus JJ, et al. Adipokines in inflammation and metabolic disease. Nat Rev Immunol, 2011,11(2):85–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest, 2017,127(1):1–4

    Article  PubMed  PubMed Central  Google Scholar 

  4. Stern JH, Rutkowski JM, Scherer PE. Adiponectin, Leptin, and Fatty Acids in the Maintenance of Metabolic Homeostasis through Adipose Tissue Crosstalk. Cell Metab, 2016,23(5):770–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weisberg SP, McCann D, Desai M, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003,112(12):1796–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li Y, Soos TJ, Li X, et al. Protein kinase C Theta inhibits insulin signaling by phosphorylating IRS1 at Ser(1101). J Biol Chem, 2004,279(44):45304–45307

    Article  CAS  PubMed  Google Scholar 

  7. Matsuzawa Y, Funahashi T, Nakamura T. The concept of metabolic syndrome: contribution of visceral fat accumulation and its molecular mechanism. J Atheroscler Thromb, 2011,18(8):629–639

    Article  CAS  PubMed  Google Scholar 

  8. Pekgor S, Duran C, Berberoglu U, et al. The Role of Visceral Adiposity Index Levels in Predicting the Presence of Metabolic Syndrome and Insulin Resistance in Overweight and Obese Patients. Metab Syndr Relat Disord, 2019,17(5):296–302

    Article  CAS  PubMed  Google Scholar 

  9. Chen Y, Pfeifer A. Brown Fat-Derived Exosomes: Small Vesicles with Big Impact. Cell Metab, 2017,25(4):759–760

    Article  CAS  PubMed  Google Scholar 

  10. Cocucci E. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol, 2015,25(6):364–372

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y, Shi L, Mei H, et al. Inflamed macrophage microvesicles induce insulin resistance in human adipocytes. Nutr Metab (Lond), 2015,12:21

    Article  PubMed  Google Scholar 

  12. Thomou T, Mori MA, Dreyfuss JM, et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature, 2017,542(7642):450–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao H, Shang Q, Pan Z, et al. Exosomes From Adipose-Derived Stem Cells Attenuate Adipose Inflammation and Obesity Through Polarizing M2 Macrophages and Beiging in White Adipose Tissue. Diabetes, 2018,67(2):235–247

    Article  CAS  PubMed  Google Scholar 

  14. Ying W, Riopel M, Bandyopadhyay G, et al. Adipose Tissue Macrophage-Derived Exosomal miRNAs Can Modulate In Vivo and In Vitro Insulin Sensitivity. Cell, 2017,171(2):372–384.e12

    Article  CAS  PubMed  Google Scholar 

  15. Thery C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles, 2018,7(1):1535750

    Article  PubMed  PubMed Central  Google Scholar 

  16. Martinez MC, Andriantsitohaina R. Extracellular Vesicles in Metabolic Syndrome. Circ Res, 2017,120(10):1674–1686

    Article  CAS  PubMed  Google Scholar 

  17. Malloci M, Perdomo L, Veerasamy M, et al. Extracellular Vesicles: Mechanisms in Human Health and Disease. Antioxid Redox Signal, 2019,30(6):813–856

    Article  CAS  PubMed  Google Scholar 

  18. Durcin M, Fleury A, Taillebois E, et al. Characterisation of adipocyte-derived extracellular vesicle subtypes identifies distinct protein and lipid signatures for large and small extracellular vesicles. J Extracell Vesicles, 2017,6(1):1305677

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bateman RM, Sharpe MD, Jagger JE, et al. 36th International Symposium on Intensive Care and Emergency Medicine: Brussels, Belgium. 15–18 March 2016. Crit Care, 2016,20(Suppl 2):94

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kranendonk ME, de Kleijn DP, Kalkhoven E, et al. Extracellular vesicle markers in relation to obesity and metabolic complications in patients with manifest cardiovascular disease. Cardiovasc Diabetol, 2014,13:37

    Article  PubMed  PubMed Central  Google Scholar 

  21. Deng ZB, Poliakov A, Hardy RW, et al. Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes, 2009,58(11):2498–2505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lazar I, Clement E, Dauvillier S, et al. Adipocyte Exosomes Promote Melanoma Aggressiveness through Fatty Acid Oxidation: A Novel Mechanism Linking Obesity and Cancer. Cancer Res, 2016,76(14):4051–4057

    Article  CAS  PubMed  Google Scholar 

  23. Iacomino G, Russo P, Stillitano I, et al. Circulating microRNAs are deregulated in overweight/obese children: preliminary results of the I.Family study. Genes Nutr, 2016,11:7

    Article  PubMed  PubMed Central  Google Scholar 

  24. Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol, 2013,9(9):513–521

    Article  CAS  PubMed  Google Scholar 

  25. Ortega FJ, Mercader JM, Moreno-Navarrete JM, et al. Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care, 2014,37(5):1375–1383

    Article  CAS  PubMed  Google Scholar 

  26. Amosse J, Durcin M, Malloci M, et al. Phenoty** of circulating extracellular vesicles (EVs) in obesity identifies large EVs as functional conveyors of macrophage migration inhibitory factor. Mol Metab, 2018,18:134–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee JE, Moon PG, Lee IK, et al. Proteomic Analysis of Extracellular Vesicles Released by Adipocytes of Otsuka Long-Evans Tokushima Fatty (OLETF) Rats. Protein J, 2015,34(3):220–235

    Article  CAS  PubMed  Google Scholar 

  28. S ELA, Mager I, Breakefield XO, et al. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov, 2013,12(5):347–357

    Article  Google Scholar 

  29. Minciacchi VR, Freeman MR, Di Vizio D. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol, 2015,40:41–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. D’Souza-Schorey C, Schorey JS. Regulation and mechanisms of extracellular vesicle biogenesis and secretion. Essays Biochem, 2018,62(2):125–133

    Article  PubMed  Google Scholar 

  31. Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci, 2018,75(2):193–208

    Article  CAS  PubMed  Google Scholar 

  32. Willms E, Cabanas C, Mager I, et al. Extracellular Vesicle Heterogeneity: Subpopulations, Isolation Techniques, and Diverse Functions in Cancer Progression. Front Immunol, 2018,9:738

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kahlert C, Kalluri R. Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med (Berl), 2013,91(4):431–437

    Article  CAS  PubMed  Google Scholar 

  34. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol, 2018,19(4):213–228

    Article  CAS  PubMed  Google Scholar 

  35. Schmidt O, Teis D. The ESCRT machinery. Curr Biol, 2012,22(4):R116–R120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Colombo M, Moita C, van Niel G, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci, 2013,126(Pt 24):5553–5565

    CAS  PubMed  Google Scholar 

  37. Hoshino D, Kirkbride KC, Costello K, et al. Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep, 2013,5(5):1159–1168

    Article  CAS  PubMed  Google Scholar 

  38. Hemler ME. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol, 2003,19:397–422

    Article  CAS  PubMed  Google Scholar 

  39. Perez-Hernandez D, Gutierrez-Vazquez C, Jorge I, et al. The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. J Biol Chem, 2013,288(17):11649–11661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lopez-Montero I, Monroy F, Velez M, et al. Ceramide: from lateral segregation to mechanical stress. Biochim Biophys Acta, 2010,1798(7):1348–1356

    Article  CAS  PubMed  Google Scholar 

  41. Elsherbini A, Bieberich E. Ceramide and Exosomes: A Novel Target in Cancer Biology and Therapy. Adv Cancer Res, 2018,140:121–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Blanc L, Vidal M. New insights into the function of Rab GTPases in the context of exosomal secretion. Small GTPases, 2018,9(1–2):95–106

    Article  CAS  PubMed  Google Scholar 

  43. Liu J, Zhang Y, Tian Y, et al. Integrative biology of extracellular vesicles in diabetes mellitus and diabetic complications. Theranostics, 2022,12(3):1342–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hartwig S, De Filippo E, Goddeke S, et al. Exosomal proteins constitute an essential part of the human adipose tissue secretome. Biochim Biophys Acta Proteins Proteom, 2019,1867(12):140172

    Article  CAS  PubMed  Google Scholar 

  45. Clement E, Lazar I, Attane C, et al. Adipocyte extracellular vesicles carry enzymes and fatty acids that stimulate mitochondrial metabolism and remodeling in tumor cells. EMBO J, 2020,39(3):e102525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Trajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science, 2008,319(5867):1244–1247

    Article  CAS  PubMed  Google Scholar 

  47. Subra C, Grand D, Laulagnier K, et al. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res, 2010,51(8):2105–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gao Y, Qin Y, Wan C, et al. Small Extracellular Vesicles: A Novel Avenue for Cancer Management. Front Oncol, 2021,11:638357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zakharova L, Svetlova M, Fomina AF. T cell exosomes induce cholesterol accumulation in human monocytes via phosphatidylserine receptor. J Cell Physiol, 2007,212(1):174–181

    Article  CAS  PubMed  Google Scholar 

  50. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science, 2020,367(6478):eaau6977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Garcia NA, Ontoria-Oviedo I, Gonzalez-King H, et al. Glucose Starvation in Cardiomyocytes Enhances Exosome Secretion and Promotes Angiogenesis in Endothelial Cells. PLoS One, 2015,10(9):e0138849

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhang Y, Liu Y, Liu H, et al. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci, 2019,9:19

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kowal J, Arras G, Colombo M, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A, 2016,113(8):E968–E977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol, 2007,9(6):654–659

    Article  CAS  PubMed  Google Scholar 

  55. Bellingham SA, Coleman BM, Hill AF. Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res, 2012,40(21):10937–10949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huang X, Yuan T, Tschannen M, et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics, 2013,14:319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet, 2015,16(7):421–433

    Article  CAS  PubMed  Google Scholar 

  58. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993,75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  59. Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol, 2019,20(1):5–20

    Article  CAS  PubMed  Google Scholar 

  60. Gyorgy B, Szabo TG, Pasztoi M, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci, 2011,68(16):2667–2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Thery C, Amigorena S, Raposo G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol, 2006,Chapter 3:Unit 3.22

  62. Laulagnier K, Javalet C, Hemming FJ, et al. Amyloid precursor protein products concentrate in a subset of exosomes specifically endocytosed by neurons. Cell Mol Life Sci, 2018,75(4):757–773

    Article  CAS  PubMed  Google Scholar 

  63. Kamerkar S, LeBleu VS, Sugimoto H, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature, 2017,546(7659):498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vargas A, Zhou S, Ethier-Chiasson M, et al. Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia. FASEB J, 2014,28(8):3703–3719

    Article  CAS  PubMed  Google Scholar 

  65. Escrevente C, Keller S, Altevogt P, et al. Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer, 2011,11:108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Heusermann W, Hean J, Trojer D, et al. Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER. J Cell Biol, 2016,213(2):173–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Prada I, Amin L, Furlan R, et al. A new approach to follow a single extracellular vesicle-cell interaction using optical tweezers. Biotechniques, 2016,60(1):35–41

    Article  CAS  PubMed  Google Scholar 

  68. Tian T, Zhu YL, Zhou YY, et al. Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J Biol Chem, 2014,289(32):22258–22267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Villarroya F, Cereijo R, Villarroya J, et al. Brown adipose tissue as a secretory organ. Nat Rev Endocrinol, 2017,13(1):26–35

    Article  CAS  PubMed  Google Scholar 

  70. Guilherme A, Virbasius JV, Puri V, et al. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol, 2008,9(5):367–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Crewe C, Joffin N, Rutkowski JM, et al. An Endothelial-to-Adipocyte Extracellular Vesicle Axis Governed by Metabolic State. Cell, 2018,175(3):695–708.e613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cildir G, Akincilar SC, Tergaonkar V. Chronic adipose tissue inflammation: all immune cells on the stage. Trends Mol Med, 2013,19(8):487–500

    Article  CAS  PubMed  Google Scholar 

  73. Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol, 2006,6(10):772–783

    Article  CAS  PubMed  Google Scholar 

  74. Men Y, Yelick J, ** S, et al. Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS. Nat Commun, 2019,10(1):4136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem, 2019,88:487–514

    Article  CAS  PubMed  Google Scholar 

  76. Bebelman MP, Smit MJ, Pegtel DM, et al. Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther, 2018,188:1–11

    Article  CAS  PubMed  Google Scholar 

  77. Kalluri R. The biology and function of exosomes in cancer. J Clin Invest, 2016,126(4):1208–1215

    Article  PubMed  PubMed Central  Google Scholar 

  78. Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol, 2019,21(1):9–17

    Article  CAS  PubMed  Google Scholar 

  79. Aoki N, **-no S, Nakagawa Y, et al. Identification and characterization of microvesicles secreted by 3T3-L1 adipocytes: redox- and hormone-dependent induction of milk fat globule-epidermal growth factor 8-associated microvesicles. Endocrinology, 2007,148(8):3850–3862

    Article  CAS  PubMed  Google Scholar 

  80. Kranendonk ME, Visseren FL, van Balkom BW, et al. Human adipocyte extracellular vesicles in reciprocal signaling between adipocytes and macrophages. Obesity (Silver Spring), 2014,22(5):1296–1308

    Article  CAS  PubMed  Google Scholar 

  81. Connolly KD, Guschina IA, Yeung V, et al. Characterisation of adipocyte-derived extracellular vesicles released pre- and post-adipogenesis. J Extracell Vesicles, 2015,4:29159

    Article  PubMed  Google Scholar 

  82. Huang XY, Chen JX, Ren Y, et al. Exosomal miR-122 promotes adipogenesis and aggravates obesity through the VDR/SREBF1 axis. Obesity (Silver Spring), 2022,30(3):666–679

    Article  CAS  PubMed  Google Scholar 

  83. Yao F, Yu Y, Feng L, et al. Adipogenic miR-27a in adipose tissue upregulates macrophage activation via inhibiting PPARgamma of insulin resistance induced by high-fat diet-associated obesity. Exp Cell Res, 2017,355(2):105–112

    Article  CAS  PubMed  Google Scholar 

  84. Pan Y, Hui X, Hoo RLC, et al. Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J Clin Invest, 2019,129(2):834–849

    Article  PubMed  PubMed Central  Google Scholar 

  85. Flaherty SE, 3rd, Grijalva A, Xu X, et al. A lipase-independent pathway of lipid release and immune modulation by adipocytes. Science, 2019,363(6430):989–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fedorenko A, Lishko PV, Kirichok Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell, 2012,151(2):400–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nedergaard J, Golozoubova V, Matthias A, et al. UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency. Biochim Biophys Acta, 2001,1504(1):82–106

    Article  CAS  PubMed  Google Scholar 

  88. Liu J, Wang Y, Lin L. Small molecules for fat combustion: targeting obesity. Acta Pharm Sin B, 2019,9(2):220–236

    Article  PubMed  Google Scholar 

  89. Chouchani ET, Kazak L, Spiegelman BM. New Advances in Adaptive Thermogenesis: UCP1 and Beyond. Cell Metab, 2019,29(1):27–37

    Article  CAS  PubMed  Google Scholar 

  90. Lee YH, Petkova AP, Mottillo EP, et al. In vivo identification of bipotential adipocyte progenitors recruited by beta3-adrenoceptor activation and high-fat feeding. Cell Metab, 2012,15(4):480–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chen Y, Buyel JJ, Hanssen MJ, et al. Exosomal microRNA miR-92a concentration in serum reflects human brown fat activity. Nat Commun, 2016,7:11420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Boutens L, Stienstra R. Adipose tissue macrophages: going off track during obesity. Diabetologia, 2016,59(5):879–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Russo L, Lumeng CN. Properties and functions of adipose tissue macrophages in obesity. Immunology, 2018,155(4):407–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen Y, Siegel F, Kipschull S, et al. miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nat Commun, 2013,4:1769

    Article  PubMed  Google Scholar 

  95. Ying W, Gao H, Dos Reis FCG, et al. MiR-690, an exosomal-derived miRNA from M2-polarized macrophages, improves insulin sensitivity in obese mice. Cell Metab, 2021,33(4):781–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. An Y, Lin S, Tan X, et al. Exosomes from adipose-derived stem cells and application to skin wound healing. Cell Prolif, 2021,54(3):e12993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Buzzetti R, Zampetti S, Maddaloni E. Adult-onset autoimmune diabetes: current knowledge and implications for management. Nat Rev Endocrinol, 2017,13(11):674–686

    Article  CAS  PubMed  Google Scholar 

  98. Kakleas K, Soldatou A, Karachaliou F, et al. Associated autoimmune diseases in children and adolescents with type 1 diabetes mellitus (T1DM). Autoimmun Rev, 2015,14(9):781–797

    Article  CAS  PubMed  Google Scholar 

  99. Abdi R, Fiorina P, Adra CN, et al. Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes, 2008,57(7):1759–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Volarevic V, Arsenijevic N, Lukic ML, et al. Concise review: Mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells, 2011,29(1):5–10

    Article  CAS  PubMed  Google Scholar 

  101. Volarevic V, Al-Qahtani A, Arsenijevic N, et al. Interleukin-1 receptor antagonist (IL-1Ra) and IL-1Ra producing mesenchymal stem cells as modulators of diabetogenesis. Autoimmunity, 2010,43(4):255–263

    Article  CAS  PubMed  Google Scholar 

  102. Wang J, Yi Y, Zhu Y, et al. Effects of adipose-derived stem cell released exosomes on wound healing in diabetic mice. Zhongguo **u Fu Chong Jian Wai Ke Za Zhi (Chinese), 2020,34(1):124–131

    PubMed  Google Scholar 

  103. Li X, **e X, Lian W, et al. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model. Exp Mol Med, 2018,50(4):1–14

    Article  PubMed  PubMed Central  Google Scholar 

  104. Blazquez R, Sanchez-Margallo FM, de la Rosa O, et al. Immunomodulatory Potential of Human Adipose Mesenchymal Stem Cells Derived Exosomes on in vitro Stimulated T Cells. Front Immunol, 2014,5:556

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ma J, Zhang Z, Wang Y, et al. Investigation of miR-126-3p loaded on adipose stem cell-derived exosomes for wound healing of full-thickness skin defects. Exp Dermatol, 2022,31(3):362–374

    Article  CAS  PubMed  Google Scholar 

  106. Togliatto G, Dentelli P, Gili M, et al. Obesity reduces the pro-angiogenic potential of adipose tissue stem cell-derived extracellular vesicles (EVs) by impairing miR-126 content: impact on clinical applications. Int J Obes (Lond), 2016,40(1):102–111

    Article  CAS  PubMed  Google Scholar 

  107. He L, Zhu C, Jia J, et al. ADSC-Exos containing MALAT1 promotes wound healing by targeting miR-124 through activating Wnt/beta-catenin pathway. Biosci Rep, 2020,40(5):BSR20192549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cooper DR, Wang C, Patel R, et al. Human Adipose-Derived Stem Cell Conditioned Media and Exosomes Containing MALAT1 Promote Human Dermal Fibroblast Migration and Ischemic Wound Healing. Adv Wound Care (New Rochelle), 2018,7(9):299–308

    Article  PubMed  Google Scholar 

  109. Wu YL, Lin ZJ, Li CC, et al. Adipose exosomal noncoding RNAs: Roles and mechanisms in metabolic diseases. Obes Rev, 2024,25(6):e13740

    Article  CAS  PubMed  Google Scholar 

  110. Zhang Y, Tian Z, Ye H, et al. Emerging functions of circular RNA in the regulation of adipocyte metabolism and obesity. Cell Death Discov, 2022,8(1):268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Song M, Han L, Chen FF, et al. Adipocyte-Derived Exosomes Carrying Sonic Hedgehog Mediate M1 Macrophage Polarization-Induced Insulin Resistance via Ptch and PI3K Pathways. Cell Physiol Biochem, 2018,48(4):1416–1432

    Article  CAS  PubMed  Google Scholar 

  112. Tsai S, Clemente-Casares X, Revelo XS, et al. Are obesity-related insulin resistance and type 2 diabetes autoimmune diseases? Diabetes, 2015,64(6):1886–1897

    Article  CAS  PubMed  Google Scholar 

  113. Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nat Med, 2017,23(7):804–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Younossi ZM. Non-alcoholic fatty liver disease - A global public health perspective. J Hepatol, 2019,70(3):531–544

    Article  PubMed  Google Scholar 

  115. Mziaut H, Henniger G, Ganss K, et al. MiR-132 controls pancreatic beta cell proliferation and survival through Pten/Akt/Foxo3 signaling. Mol Metab, 2020,31:150–162

    Article  CAS  PubMed  Google Scholar 

  116. Dusaulcy R, Handgraaf S, Visentin F, et al. miR-132-3p is a positive regulator of alpha-cell mass and is downregulated in obese hyperglycemic mice. Mol Metab, 2019,22:84–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cui X, You L, Zhu L, et al. Change in circulating microRNA profile of obese children indicates future risk of adult diabetes. Metabolism, 2018,78:95–105

    Article  CAS  PubMed  Google Scholar 

  118. Setyowati Karolina D, Sepramaniam S, Tan HZ, et al. miR-25 and miR-92a regulate insulin I biosynthesis in rats. RNA Biol, 2013,10(8):1365–1378

    Article  PubMed  PubMed Central  Google Scholar 

  119. Qian B, Yang Y, Tang N, et al. M1 macrophage-derived exosomes impair beta cell insulin secretion via miR-212-5p by targeting SIRT2 and inhibiting Akt/GSK-3beta/beta-catenin pathway in mice. Diabetologia, 2021,64(9):2037–2051

    Article  CAS  PubMed  Google Scholar 

  120. Cione E, Cannataro R, Gallelli L, et al. Exosome microRNAs in Metabolic Syndrome as Tools for the Early Monitoring of Diabetes and Possible Therapeutic Options. Pharmaceuticals (Basel), 2021,14(12):1257

    Article  CAS  PubMed  Google Scholar 

  121. Gesmundo I, Pardini B, Gargantini E, et al. Adipocyte-derived extracellular vesicles regulate survival and function of pancreatic beta cells. JCI Insight, 2021,6(5):e141962

    Article  PubMed  PubMed Central  Google Scholar 

  122. Katayama M, Wiklander OPB, Fritz T, et al. Circulating Exosomal miR-20b-5p Is Elevated in Type 2 Diabetes and Could Impair Insulin Action in Human Skeletal Muscle. Diabetes, 2019,68(3):515–526

    Article  CAS  PubMed  Google Scholar 

  123. Fabbrini E, Sullivan S, Klein S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology, 2010,51(2):679–689

    Article  CAS  PubMed  Google Scholar 

  124. Li D, Song H, Shuo L, et al. Gonadal white adipose tissue-derived exosomal MiR-222 promotes obesity-associated insulin resistance. Aging (Albany NY), 2020,12(22):22719–22743

    CAS  PubMed  Google Scholar 

  125. Koeck ES, Iordanskaia T, Sevilla S, et al. Adipocyte exosomes induce transforming growth factor beta pathway dysregulation in hepatocytes: a novel paradigm for obesity-related liver disease. J Surg Res, 2014,192(2):268–275

    Article  CAS  PubMed  Google Scholar 

  126. Eguchi A, Lazic M, Armando AM, et al. Circulating adipocyte-derived extracellular vesicles are novel markers of metabolic stress. J Mol Med (Berl), 2016,94(11):1241–1253

    Article  CAS  PubMed  Google Scholar 

  127. Heneghan HM, Miller N, McAnena OJ, et al. Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers. J Clin Endocrinol Metab, 2011,96(5):E846–E850

    Article  CAS  PubMed  Google Scholar 

  128. Argyropoulos C, Wang K, McClarty S, et al. Urinary microRNA profiling in the nephropathy of type 1 diabetes. PLoS One, 2013,8(1):e54662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Barutta F, Tricarico M, Corbelli A, et al. Urinary exosomal microRNAs in incipient diabetic nephropathy. PLoS One, 2013,8(11):e73798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. de Gonzalo-Calvo D, van der Meer RW, Rijzewijk LJ, et al. Serum microRNA-1 and microRNA-133a levels reflect myocardial steatosis in uncomplicated type 2 diabetes. Sci Rep, 2017,7(1):47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Deng L, Huang Y, Li L, et al. Serum miR-29a/b expression in gestational diabetes mellitus and its influence on prognosis evaluation. J Int Med Res, 2020,48(9):300060520954763

    Article  CAS  PubMed  Google Scholar 

  132. Eissa S, Matboli M, Aboushahba R, et al. Urinary exosomal microRNA panel unravels novel biomarkers for diagnosis of type 2 diabetic kidney disease. J Diabetes Complications, 2016,30(8):1585–1592

    Article  PubMed  Google Scholar 

  133. Eissa S, Matboli M, Bekhet MM. Clinical verification of a novel urinary microRNA panal: 133b, -342 and -30 as biomarkers for diabetic nephropathy identified by bioinformatics analysis. Biomed Pharmacother, 2016,83:92–99

    Article  CAS  PubMed  Google Scholar 

  134. Wan S, Wang J, Wang J, et al. Increased serum miR-7 is a promising biomarker for type 2 diabetes mellitus and its microvascular complications. Diabetes Res Clin Pract, 2017,130:171–179

    Article  CAS  PubMed  Google Scholar 

  135. Flowers E, Aouizerat BE, Abbasi F, et al. Circulating microRNA-320a and microRNA-486 predict thiazolidinedione response: Moving towards precision health for diabetes prevention. Metabolism, 2015,64(9):1051–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Karolina DS, Tavintharan S, Armugam A, et al. Circulating miRNA profiles in patients with metabolic syndrome. J Clin Endocrinol Metab, 2012,97(12):E2271–E2276

    Article  CAS  PubMed  Google Scholar 

  137. Zbikowski A, Blachnio-Zabielska A, Galli M, et al. Adipose-Derived Exosomes as Possible Players in the Development of Insulin Resistance. Int J Mol Sci, 2021,22(14):7427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Li M, Ke QF, Tao SC, et al. Fabrication of hydroxyapatite/chitosan composite hydrogels loaded with exosomes derived from miR-126-3p overexpressed synovial mesenchymal stem cells for diabetic chronic wound healing. J Mater Chem B, 2016,4(42):6830–6841

    Article  CAS  PubMed  Google Scholar 

  139. Tao SC, Rui BY, Wang QY, et al. Extracellular vesicle-mimetic nanovesicles transport LncRNA-H19 as competing endogenous RNA for the treatment of diabetic wounds. Drug Deliv, 2018,25(1):241–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Chen.

Ethics declarations

The authors declare that there is no conflict of interest with any financial organization or corporation or individual that can inappropriately influence this work.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 82070859).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, R., Chen, Y. The Role of Adipose Tissue-derived Exosomes in Chronic Metabolic Disorders. CURR MED SCI 44, 463–474 (2024). https://doi.org/10.1007/s11596-024-2902-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-024-2902-2

Keywords

Navigation