Log in

Crosstalk among Oxidative Stress, Autophagy, and Apoptosis in the Protective Effects of Ginsenoside Rb1 on Brain Microvascular Endothelial Cells: A Mixed Computational and Experimental Study

  • Original Article
  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Objective

Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1), a component derived from medicinal plants, is known for its pharmacological benefits in IS, but its protective effects on BMECs have yet to be explored. This study aimed to investigate the potential protective effects of GRb1 on BMECs.

Methods

An in vitro oxygen-glucose deprivation/reperfusion (OGD/R) model was established to mimic ischemia-reperfusion (I/R) injury. Bulk RNA-sequencing data were analyzed by using the Human Autophagy Database and various bioinformatic tools, including gene set enrichment analysis (GSEA), Gene Ontology (GO) classification and enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, protein-protein interaction network analysis, and molecular docking. Experimental validation was also performed to ensure the reliability of our findings.

Results

Rb1 had a protective effect on BMECs subjected to OGD/R injury. Specifically, GRb1 was found to modulate the interplay between oxidative stress, apoptosis, and autophagy in BMECs. Key targets such as sequestosome 1 (SQSTM1/p62), autophagy related 5 (ATG5), and hypoxia-inducible factor 1-alpha (HIF-1α) were identified, highlighting their potential roles in mediating the protective effects of GRb1 against IS-induced damage.

Conclusion

GRbl protects BMECs against OGD/R injury by influencing oxidative stress, apoptosis, and autophagy. The identification of SQSTM1/p62, ATG5, and HIF-1α as promising targets further supports the potential of GRb1 as a therapeutic agent for IS, providing a foundation for future research into its mechanisms and applications in IS treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keaney J, Campbell M. The dynamic blood-brain barrier. FEBS J, 2015,282(21):4067–4079

    Article  CAS  PubMed  Google Scholar 

  2. Sweeney MD, Zhao Z, Montagne A, et al. Blood-brain barrier: From physiology to disease and back. Physiol Rev, 2019,99(1):21–78

    Article  CAS  PubMed  Google Scholar 

  3. Wong BW, Marsch E, Treps L, et al. Endothelial cell metabolism in health and disease: Impact of hypoxia. EMBO J, 2017,36(15):2187–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med, 2013,19(12):1584–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gong L, Yin J, Zhang Y, et al. Neuroprotective mechanisms of ginsenoside rb1 in central nervous system diseases. Front Pharmacol, 2022,13:914352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hwang JY, Shim JS, Song MY, et al. Proteomic analysis reveals that the protective effects of ginsenoside rb1 are associated with the actin cytoskeleton in β-amyloid-treated neuronal cells. J Ginseng Res, 2016,40(3):278–284

    Article  PubMed  Google Scholar 

  7. Jiang N, Wang K, Zhang Y, et al. Protective effect of ginsenoside rb1 against chronic restraint stress (CRS)-induced memory impairments in rats. Behav Brain Res, 2021,405:113146

    Article  CAS  PubMed  Google Scholar 

  8. Jiang Z, Wang Y, Zhang X, et al. Preventive and therapeutic effects of ginsenoside rb1 for neural injury during cerebral infarction in rats. Am J Chin Med, 2013,41(2):341–352

    Article  CAS  PubMed  Google Scholar 

  9. Ni XC, Wang HF, Cai YY, et al. Ginsenoside rb1 inhibits astrocyte activation and promotes transfer of astrocytic mitochondria to neurons against ischemic stroke. Redox Biol, 2022,54:102363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li DW, Zhou FZ, Sun XC, et al. Ginsenoside rb1 protects dopaminergic neurons from inflammatory injury induced by intranigral lipopolysaccharide injection. Neural Regen Res, 2019,14(10):1814–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Orellana-Urzúa S, Rojas I, Líbano L, et al. Pathophysiology of ischemic stroke: Role of oxidative stress. Curr Pharm Des, 2020,26(34):4246–4260

    Article  PubMed  Google Scholar 

  12. Stark R, Grzelak M, Hadfield J. RNA sequencing: The teenage years. Nat Rev Genet, 2019,20(11):631–656

    Article  CAS  PubMed  Google Scholar 

  13. Thind AS, Monga I, Thakur PK, et al. Demystifying emerging bulk RNA-seq applications: The application and utility of bioinformatic methodology. Brief Bioinform, 2021,22(6):bbab259

    Article  PubMed  Google Scholar 

  14. Gong L, Zhang D, Dong Y, et al. Integrated bioinformatics analysis for identificating the therapeutic targets of aspirin in small cell lung cancer. J Biomed Inform, 2018,88:20–28

    Article  PubMed  Google Scholar 

  15. Gauthier J, Vincent AT, Charette SJ, et al. A brief history of bioinformatics. Brief Bioinform, 2019,20,(6):1981–1996

    Article  PubMed  Google Scholar 

  16. Tomkins JE, Manzoni C. Advances in protein-protein interaction network analysis for parkinson’s disease. Neurobiol Dis, 2021,155:105395

    Article  CAS  PubMed  Google Scholar 

  17. Ferreira LG, Dos Santos RN, Oliva G, et al. Molecular docking and structure-based drug design strategies. Mol Basel Switz, 2015,20(7):13384–13421

    CAS  Google Scholar 

  18. Pinzi L, Rastelli G. Molecular docking: Shifting paradigms in drug discovery. Int J Mol Sci, 2019,20(18):4331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou C, Zhong W, Zhou J, et al. Monitoring autophagic flux by an improved tandem fluorescent-tagged LC3 (mTagRFP-mWasabi-LC3) reveals that high-dose rapamycin impairs autophagic flux in cancer cells. Autophagy, 2012,8(8):1215–1226

    Article  CAS  PubMed  Google Scholar 

  20. O’Boyle NM, Banck M, James CA, et al. Open babel: An open chemical toolbox. J Cheminformatics, 2011,3:33

    Article  Google Scholar 

  21. Eberhardt J, Santos-Martins D, Tillack AF, et al. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings. J Chem Inf Model, 2021,61(8):3891–3898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Elefantova K, Lakatos B, Kubickova J, et al. Detection of the mitochondrial membrane potential by the cationic dye JC-1 in l1210 cells with massive overexpression of the plasma membrane ABCB1 drug transporter. Int J Mol Sci, 2018,19(7):1985

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cossarizza A, Baccarani-Contri M, Kalashnikova G, et al. A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolc arbocyanine iodide (JC-1). Biochem Biophys Res Commun, 1993,197(1):40–45

    Article  CAS  PubMed  Google Scholar 

  24. Perelman A, Wachtel C, Cohen M, et al. JC-1: Alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry. Cell Death Dis, 2012,3(11):e430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mendelson SJ, Prabhakaran S. Diagnosis and management of transient ischemic attack and acute ischemic stroke: A review. JAMA, 2021,325(11):1088–1098

    Article  CAS  PubMed  Google Scholar 

  26. Abdullahi W, Tripathi D, Ronaldson PT. Blood-brain barrier dysfunction in ischemic stroke: Targeting tight junctions and transporters for vascular protection. Am J Physiol Cell Physiol, 2018,315(3):C343–C356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ornatowski W, Lu Q, Yegambaram M, et al. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol, 2020,36:101679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell, 2008,132(1):27–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li ZY, Wu YF, Xu XC, et al. Autophagy as a double-edged sword in pulmonary epithelial injury: A review and perspective. Am J Physiol Lung Cell Mol Physiol, 2017,313(2):L207–L217

    Article  PubMed  Google Scholar 

  30. Filomeni G, Desideri E, Cardaci S, et al. Under the ROS: Thiol network is the principal suspect for autophagy commitment. Autophagy, 2010,6(7):999–1005

    Article  CAS  PubMed  Google Scholar 

  31. Larson-Casey JL, He C, Carter AB. Mitochondrial quality control in pulmonary fibrosis. Redox Biol, 2020,33:101426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang N, Guan QW, Chen FH, et al. Antioxidants targeting mitochondrial oxidative stress: Promising neuroprotectants for epilepsy. Oxid Med Cell Longev, 2020,2020:6687185

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang L, Wang K, Lei Y, et al. Redox signaling: Potential arbitrator of autophagy and apoptosis in therapeutic response. Free Radic Biol Med, 2015,89:452–465

    Article  CAS  PubMed  Google Scholar 

  34. Fu ZJ, Wang ZY, Xu L, et al. HIF-1α-BNIP3-mediated mitophagy in tubular cells protects against renal ischemia/reperfusion injury. Redox Biol, 2020,36:101671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ichimura Y, Waguri S, Sou Y-S, et al. Phosphorylation of p62 activates the keap1-nrf2 pathway during selective autophagy. Mol Cell, 2013,51(5):618–631

    Article  CAS  PubMed  Google Scholar 

  36. Basit F, van Oppen LM, Schöckel L, et al. Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death Dis, 2017,8(3):e2716

    Article  PubMed  PubMed Central  Google Scholar 

  37. Qin X, Zhang J, Wang B, et al. Ferritinophagy is involved in the zinc oxide nanoparticles-induced ferroptosis of vascular endothelial cells. Autophagy, 2021,17(12):4266–4285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schütt F, Aretz S, Auffarth GU, et al. Moderately reduced ATP levels promote oxidative stress and debilitate autophagic and phagocytic capacities in human RPE cells. Invest Ophthalmol Vis Sci, 2012,53(9):5354–5361

    Article  PubMed  Google Scholar 

  39. Yang NC, Jeng KCG, Ho WM, et al. ATP depletion is an important factor in DHEA-induced growth inhibition and apoptosis in BV-2 cells. Life Sci, 2002,70(17):1979–1988

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Cao or Hao Li.

Ethics declarations

On behalf of all the authors, the corresponding author states that there is no conflict of interests.

Additional information

This study was funded by the Science and Technology Innovation Project of the China Academy of Chinese Medical Sciences (Nos. CI2021A04618 and CI2021A01401).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Ym., Liu, Ss., Zhao, M. et al. Crosstalk among Oxidative Stress, Autophagy, and Apoptosis in the Protective Effects of Ginsenoside Rb1 on Brain Microvascular Endothelial Cells: A Mixed Computational and Experimental Study. CURR MED SCI 44, 578–588 (2024). https://doi.org/10.1007/s11596-024-2858-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-024-2858-2

Keywords

Navigation