Log in

Development and Validation of a Prediction Model on Adult Emergency Department Patients for Early Identification of Fulminant Myocarditis

  • Original Article
  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Objective

It is difficult to predict fulminant myocarditis at an early stage in the emergency department. The objective of this study was to construct and validate a simple prediction model for the early identification of fulminant myocarditis.

Methods

A total of 61 patients with fulminant myocarditis and 160 patients with acute myocarditis were enrolled in the training and internal validation cohorts. LASSO regression and multivariate logistic regression were selected to develop the prediction model. The selection of the model was based on overall performance and simplicity. A nomogram based on the optimal model was built, and its clinical usefulness was evaluated by decision curve analysis. The predictive model was further validated in an external validation group.

Results

The resulting prediction model was based on 4 factors: systolic blood pressure, troponin I, left ventricular ejection fraction, and ventricular wall motion abnormality. The Brier scores of the final model were 0.078 in the training data set and 0.061 in the internal testing data set, respectively. The C-indexes of the training data set and the testing data set were 0.952 and 0.968, respectively. Decision curve analysis showed that the nomogram model developed based on the 4 predictors above had a positive net benefit for predicting probability thresholds. In the external validation cohort, the model also showed good performance (Brier score=0.007, and C-index=0.989).

Conclusion

We developed and validated an early prediction model consisting of 4 clinical factors (systolic blood pressure, troponin I, left ventricular ejection fraction, and ventricular wall motion abnormality) to identify potential fulminant myocarditis patients in the emergency department.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu C, Wang Z, Chen K, et al. The absolute and relative changes in high-sensitivity cardiac troponin I are associated with the in-hospital mortality of patients with fulminant myocarditis. BMC Cardiovasc Disord, 2021,21(1):571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tschöpe C, Cooper LT, Torre-Amione G, et al. Management of Myocarditis-Related Cardiomyopathy in Adults. Circ Res, 2019,124(11):1568–1583

    Article  PubMed  Google Scholar 

  3. Veronese G, Ammirati E, Chen C, et al. Management perspectives from the 2019 Wuhan international workshop on fulminant myocarditis. Int J Cardiol, 2021,324:131–138

    Article  PubMed  Google Scholar 

  4. Kociol RD, Cooper LT, Fang JC, et al. Recognition and Initial Management of Fulminant Myocarditis: A Scientific Statement From the American Heart Association. Circulation, 2020,141(6):e69–e92

    Article  PubMed  Google Scholar 

  5. Wang D, Li S, Jiang J, et al. Chinese society of cardiology expert consensus statement on the diagnosis and treatment of adult fulminant myocarditis. Sci China Life Sci, 2019,62(2):187–202

    Article  PubMed  Google Scholar 

  6. Inaba O, Satoh Y, Isobe M, et al. Factors and values at admission that predict a fulminant course of acute myocarditis: data from Tokyo CCU network database. Heart Vessels, 2017,32(8):952–959

    Article  PubMed  Google Scholar 

  7. Ginsberg F, Parrillo JE. Fulminant myocarditis. Crit Care Clin, 2013,29(3):465–483

    Article  PubMed  Google Scholar 

  8. Ammirati E, Cipriani M, Lilliu M, et al. Survival and Left Ventricular Function Changes in Fulminant Versus Nonfulminant Acute Myocarditis. Circulation, 2017,136(6):529–545

    Article  PubMed  Google Scholar 

  9. Sharma AN, Stultz JR, Bellamkonda N, et al. Fulminant Myocarditis: Epidemiology, Pathogenesis, Diagnosis, and Management. Am J Cardiol, 2019,124(12):1954–1960

    Article  PubMed  Google Scholar 

  10. Veronese G, Ammirati E, Cipriani M, et al. Fulminant myocarditis: Characteristics, treatment, and outcomes. Anatol J Cardiol, 2018,19(4):279–286

    PubMed  PubMed Central  Google Scholar 

  11. Ammirati E, Veronese G, Cipriani M, et al. Acute and Fulminant Myocarditis: a Pragmatic Clinical Approach to Diagnosis and Treatment. Curr Cardiol Rep, 2018,20(11):114

    Article  PubMed  Google Scholar 

  12. Newman-toker DE, Moy E, Valente E, et al. Missed diagnosis of stroke in the emergency department: a cross-sectional analysis of a large population-based sample. Diagnosis (Berl), 2014,1:155–166

    Article  PubMed  Google Scholar 

  13. Abedi V, Khan A, Chaudhary D, et al. Using artificial intelligence for improving stroke diagnosis in emergency departments: a practical framework. Ther Adv Neurol Disord, 2020,13:1756286420938962

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tschöpe C, Ammirati E, Bozkurt B, et al. Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nat Rev Cardiol, 2021,18(3):169–193

    Article  PubMed  Google Scholar 

  15. Caforio AL, Pankuweit S, Arbustini E, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J, 2013,34(33):2636–2648d

    Article  PubMed  Google Scholar 

  16. JCS Joint Working Group. Guidelines for diagnosis and treatment of myocarditis (JCS 2009): digest version. Circ J, 2011,75(3):734–743

    Article  Google Scholar 

  17. Lee CH, Tsai WC, Hsu CH, et al. Predictive factors of a fulminant course in acute myocarditis. Int J Cardiol, 2006,109(1):142–145

    Article  PubMed  Google Scholar 

  18. Kang TD, Ren YL, Zhao H, et al. Risk factors for adverse cardiac events in adults with fulminant myocarditis during hospitalization. World J Clin Cases, 2020,8(2):255–263

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mo X, Chen X, Ieong C, et al. Early Prediction of Clinical Response to Etanercept Treatment in Juvenile Idiopathic Arthritis Using Machine Learning. Front Pharmacol, 2020,11:1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sill M, Saadati M, Benner A. Applying stability selection to consistently estimate sparse principal components in high-dimensional molecular data. Bioinformatics, 2015,31(16):2683–2690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stidham RW, Liu Y, Enchakalody B, et al. The Use of Readily Available Longitudinal Data to Predict the Likelihood of Surgery in Crohn Disease. Inflamm Bowel Dis, 2021,27(8):1328–1334

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tong L, Erdmann C, Daldalian M, et al. Comparison of predictive modeling approaches for 30-day all-cause non-elective readmission risk. BMC Med Res Methodol, 2016,16:26

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cooper LT Jr. Myocarditis. N Engl J Med, 2009,360(15):1526–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang Z, Wang Y, Lin H, et al. Early characteristics of fulminant myocarditis vs. non-fulminant myo-carditis: A meta-analysis. Medicine (Baltimore), 2019,98(8):e14697

    Article  PubMed  Google Scholar 

  25. Sevransky J. Clinical assessment of hemodynamically unstable patients. Curr Opin Crit Care, 2009,15(3):234–238

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bachmaier K, Mair J, Offner F, et al. Serum cardiac troponin T and creatine kinase-MB elevations in murine autoimmune myocarditis. Circulation, 1995,92(7):1927–1932

    Article  CAS  PubMed  Google Scholar 

  27. Ang E, Mweempwa A, Heron C, et al. Cardiac Troponin I and T in Checkpoint Inhibitor-associated Myositis and Myocarditis. J Immunother, 2021,44(4):162–163

    Article  CAS  PubMed  Google Scholar 

  28. Freixa X, Sionis A, Castel A, et al. Low troponin-I levels on admission are associated with worse prognosis in patients with fulminant myocarditis. Transplant Proc, 2009,41(6):2234–2236

    Article  CAS  PubMed  Google Scholar 

  29. Ndrepepa G, Kufner S, Hoyos M, et al. High-sensitivity cardiac troponin T and prognosis in patients with ST-segment elevation myocardial infarction. J Cardiol, 2018,72(3):220–226

    Article  PubMed  Google Scholar 

  30. Wu SY, Tu DN. The pathogenesis and early diagnosis of fulminant myocarditis. Chin J Med, 2023,58(1):31–36

    Google Scholar 

  31. Hang W, Chen C, Seubert JM, et al. Fulminant myocarditis: a comprehensive review from etiology to treatments and outcomes. Signal Transduct Target Ther, 2020,5(1):287

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zuo H, Li R, Ma F, et al. Temporal echocardiography findings in patients with fulminant myocarditis: beyond ejection fraction decline. Front Med, 2020,14(3):284–292

    Article  PubMed  Google Scholar 

  33. Ferreira VM, Schulz-Menger J, Holmvang G, et al. Cardiovascular Magnetic Resonance in Nonischemic Myocardial Inflammation: Expert Recommendations. J Am Coll Cardiol, 2018,72(24):3158–3176

    Article  PubMed  Google Scholar 

  34. Wang XT, Liu DW, Yu KJ, et al. China Expert Consensus on the critical-care echocardiography. Clin Focus, 2017,32(5):369–383

    Google Scholar 

  35. Melamed R, Sprenkle MD, Ulstad VK, et al. Assessment of left ventricular function by intensivists using handheld echocardiography. Chest, 2009,135(6):1416–1420

    Article  PubMed  Google Scholar 

  36. Ammirati E, Veronese G, Brambatti M, et al. Fulminant Versus Acute Nonfulminant Myocarditis in Patients With Left Ventricular Systolic Dysfunction. J Am Coll Cardiol, 2019,74(3):299–311

    Article  PubMed  Google Scholar 

  37. Hang W, Chen C, Seubert JM, et al. Fulminant myocarditis: a comprehensive review from etiology to treatments and outcomes. Signal Transduct Target Ther, 2020,5(1):287

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang T, Miao W, Wang S, et al. Acute myocarditis mimicking ST-elevation myocardial infarction: A case report and review of the literature. Exp Ther Med, 2015,10(2):459–464

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sagar S, Liu PP, Cooper LT. Myocarditis. Lancet, 2012,379(9817):738–747

    Article  PubMed  Google Scholar 

  40. Xu G, Chen F, Zhao W, et al. Establishment and assessment of a nomogram model for predicting the risk of fulminant myocarditis: A STROBE compliant cross-sectional study. Medicine (Baltimore), 2021,100(17):e25317

    Article  CAS  PubMed  Google Scholar 

  41. Wang S, Wei X, Hu H. STAR evidence evaluation of viral fulminant myocarditis: Specificity, Timeliness, Accessibility, Risk. Eur Heart J, 2020,41(34):3281–3282

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-hao Fang.

Ethics declarations

We declare that we do not have any commercial or associative interests that represent a conflict of interest in connection with the work submitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, M., Ke, J., Fang, Mh. et al. Development and Validation of a Prediction Model on Adult Emergency Department Patients for Early Identification of Fulminant Myocarditis. CURR MED SCI 43, 961–969 (2023). https://doi.org/10.1007/s11596-023-2768-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-023-2768-8

Key words

Navigation