Log in

Calcitriol Suppressed Isoproterenol-induced Proliferation of Cardiac Fibroblasts via Integrin β3/FAK/Akt Pathway

  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Objective

Cardiac fibroblasts (CFs) proliferation and extracellular matrix deposition are important features of cardiac fibrosis. Various studies have indicated that vitamin D displays an anti-fibrotic property in chronic heart diseases. This study explored the role of vitamin D in the growth of CFs via an integrin signaling pathway.

Methods

MTT and 5-ethynyl-2′-deoxyuridine assays were performed to determine cell viability. Western blotting was performed to detect the expression of proliferating cell nuclear antigen (PCNA) and integrin signaling pathway. The fibronectin was observed by ELISA. Immunohistochemical staining was employed to evaluate the expression of integrin β3.

Results

The PCNA expression in the CFs was enhanced after isoproterenol (ISO) stimulation accompanied by an elevated expression of integrin beta-3 (β3). The blockade of the integrin β3 with a specific integrin β3 antibody reduced the PCNA expression induced by the ISO. Decreasing the integrin β3 by siRNA reduced the ISO-triggered phosphorylation of FAK and Akt. Both the FAK inhibitor and Akt inhibitor suppressed the PCNA expression induced by the ISO in the CFs. Calcitriol (CAL), an active form of vitamin D, attenuated the ISO-induced CFs proliferation by downregulating the integrin β3 expression, and phosphorylation of FAK and Akt. Moreover, CAL reduced the increased levels of fibronectin and hydroxyproline in the CFs culture medium triggered by the ISO. The administration of calcitriol decreased the integrin β3 expression in the ISO-induced myocardial injury model.

Conclusion

These findings revealed a novel role for CAL in suppressing the CFs growth by the downregulation of the integrin β3/FAK/Akt pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Du XJ, Gao XM, Wang B, et al. Age-dependent cardiomyopathy and heart failure phenotype in mice overexpressing beta(2)-adrenergic receptors in the heart. Cardiovasc Res, 2000,48(3):448–454

    Article  CAS  PubMed  Google Scholar 

  2. Bos R, Mougenot N, Findji L, et al. Inhibition of catecholamine-induced cardiac fibrosis by an aldosterone antagonist. J Cardiovasc Pharmacol, 2005,45(1):8–13

    Article  CAS  PubMed  Google Scholar 

  3. Yin Q, Lu H, Bai Y, et al. A metabolite of Danshen formulae attenuates cardiac fibrosis induced by isoprenaline, via a NOX2/ROS/p38 pathway. Br J Pharmacol, 2015,172(23):5573–5585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kirchhefer U, Hammer E, Heinick A, et al. Chronic β-adrenergic stimulation reverses depressed Ca handling in mice overexpressing inhibitor-2 of protein phosphatase 1. J Mol Cell Cardiol, 2018,125:195–204

    Article  CAS  PubMed  Google Scholar 

  5. Wimalawansa SJ. Vitamin D and cardiovascular diseases: Causality. J Steroid Biochem Mol Biol, 2018,175:29–43

    Article  CAS  PubMed  Google Scholar 

  6. Chen S, Glenn DJ, Ni W, et al. Expression of the vitamin d receptor is increased in the hypertrophic heart. Hypertension, 2008,52(6):1106–1112

    Article  CAS  PubMed  Google Scholar 

  7. Zhang L, Yan X, Zhang YL, et al. Vitamin D attenuates pressure overload-induced cardiac remodeling and dysfunction in mice. J Steroid Biochem Mol Biol, 2018,178:293–302

    Article  CAS  PubMed  Google Scholar 

  8. Chen S, Gardner DG. Liganded vitamin D receptor displays anti-hypertrophic activity in the murine heart. J Steroid Biochem Mol Biol, 2013,136:150–155

    Article  CAS  PubMed  Google Scholar 

  9. Chen S, Law CS, Grigsby CL, et al. Cardiomyocyte-specific deletion of the vitamin D receptor gene results in cardiac hypertrophy. Circulation, 2011,124(17):1838–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer, 2010,10(1):9–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen C, Li R, Ross RS, et al. Integrins and integrin-related proteins in cardiac fibrosis. J Mol Cell Cardiol, 2016,93:162–174

    Article  CAS  PubMed  Google Scholar 

  12. Sarrazy V, Koehler A, Chow ML, et al. Integrins αvβ5 and αvβ3 promote latent TGF-β1 activation by human cardiac fibroblast contraction. Cardiovasc Res, 2014,102(3):407–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Graf K, Neuss M, Stawowy P, et al. Angiotensin II and alpha(v)beta(3) integrin expression in rat neonatal cardiac fibroblasts. Hypertension, 2000,35(4):978–984

    Article  CAS  PubMed  Google Scholar 

  14. Kawano H, Cody RJ, Graf K, et al. Angiotensin II enhances integrin and alpha-actinin expression in adult rat cardiac fibroblasts. Hypertension, 2000,35(1 Pt 2):273–279

    Article  CAS  PubMed  Google Scholar 

  15. Wang XF, Gao GD, Liu J, et al. Identification of differentially expressed genes induced by angiotensin II in rat cardiac fibroblasts. Clin Exp Pharmacol Physiol, 2006,33(1–2):41–46

    Article  CAS  PubMed  Google Scholar 

  16. Wang X, Cheang WS, Yang H, et al. Nuciferine relaxes rat mesenteric arteries through endothelium-dependent and -independent mechanisms. Br J Pharmacol, 2016,172(23):5609–5618

    Article  Google Scholar 

  17. Liu Y, Gao XM, Fang L, et al. Novel role of platelets in mediating inflammatory responses and ventricular rupture or remodeling following myocardial infarction. Arterioscler Thromb Vasc Biol, 2011, 31(4):834–841

    Article  CAS  PubMed  Google Scholar 

  18. Wang X, Zhu Y, Wang X, et al. Cardioprotective effect of calcitriol on myocardial injury induced by isoproterenol in rats. J Cardiovasc Pharmacol Ther, 2013, 18(4):386–391

    Article  CAS  PubMed  Google Scholar 

  19. Lu H, Tian A, Wu J, et al. Danshensu Inhibits β-Adrenergic Receptors-Mediated Cardiac Fibrosis by ROS/p38 MAPK Axis. Biol Pharm Bull, 2014, 37(6):961–967

    Article  CAS  PubMed  Google Scholar 

  20. Colombo F, Gosselin H, El-Helou V, et al. Beta-adrenergic receptor-mediated DNA synthesis in neonatal rat cardiac fibroblasts proceeds via a phosphatidylinositol 3-kinase dependent pathway refractory to the antiproliferative action of cyclic AMP. J Cell Physiol, 2003,195(2):322–330

    Article  CAS  PubMed  Google Scholar 

  21. Kim J, Eckhart AD, Eguchi S, et al. Beta-adrenergic receptor- mediated DNA synthesis in cardiac fibroblasts is dependent on transactivation of the epidermal growth factor receptor and subsequent activation of extracellular signal-regulated kinases. J Biol Chem, 2002,277(35):32116–32123

    Article  CAS  PubMed  Google Scholar 

  22. Sundaravadivel B, Lakeya Q, Harinath K, et al. β3 Integrin in Cardiac Fibroblast Is Critical for Extracellular Matrix Accumulation during Pressure Overload Hypertrophy in Mouse. PLoS ONE, 2012,7(9):e45076

    Article  Google Scholar 

  23. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell, 2002,110(6):673–87

    Article  CAS  PubMed  Google Scholar 

  24. Seguin L, Kato S, Franovic A, et al. An integrin β3-KRAS-RalB complex drives tumour stemness and resistance to EGFR inhibition. Nat Cell Biol, 2014,16(5):457–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Naci D, Aoudjit F. Alpha2beta1 integrin promotes T cell survival and migration through the concomitant activation of ERK/Mcl-1 and p38 MAPK pathways. Cell Signal, 2014,26(9):2008–2015

    Article  CAS  PubMed  Google Scholar 

  26. Kesanakurti D, Chetty C, Rajasekhar Maddirela D, et al. Functional cooperativity by direct interaction between PAK4 and MMP-2 in the regulation of anoikis resistance, migration and invasion in glioma. Cell Death Dis, 2012,3:e445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee BY, Timpson P, Horvath LG, et al. FAK signaling in human cancer as a target for therapeutics. Pharmacol Ther, 2015,146:132–149

    Article  CAS  PubMed  Google Scholar 

  28. Moreno-Layseca P, Streuli CH. Signalling pathways linking integrins with cell cycle progression. Matrix Biol, 2014,34:144–153

    Article  CAS  PubMed  Google Scholar 

  29. Zhang J, Fan G, Zhao H, et al. Targeted inhibition of Focal Adhesion Kinase Attenuates Cardiac Fibrosis and Preserves Heart Function in Adverse Cardiac Remodeling. Sci Rep, 2017,7:43146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fan GP, Wang W, Zhao H, et al. Pharmacological Inhibition of Focal Adhesion Kinase Attenuates Cardiac Fibrosis in Mice Cardiac Fibroblast and Post-Myocardial-Infarction Models. Cell Physiol Biochem, 2015,37(2):515–526

    Article  CAS  PubMed  Google Scholar 

  31. Clemente CF, Tornatore TF, Theizen TH, et al. Targeting focal adhesion kinase with small interfering RNA prevents and reverses load-induced cardiac hypertrophy in mice. Circ Res, 2007,101(12):1339–1348

    Article  CAS  PubMed  Google Scholar 

  32. Dalla Costa AP, Clemente CF, Carvalho HF, et al. FAK mediates the activation of cardiac fibroblasts induced by mechanical stress through regulation of the mTOR complex. Cardiovasc Res, 2010,86(3):421–431

    Article  CAS  PubMed  Google Scholar 

  33. Landry NM, Rattan SG, Dixon IMC. An Improved Method of Maintaining Primary Murine Cardiac Fibroblasts in Two-Dimensional Cell Culture. Sci Rep, 2019,9(1):12889–12901

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sarrazy V, Koehler A, Chow ML, et al. Integrins αvβ5 and αvβ3 promote latent TGF-β1 activation by human cardiac fibroblast contraction. Cardiovasc Res, 2014,102(3):407–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Santiago JJ, Dangerfield AL, Rattan SG, et al. Cardiac fibroblast to myofibroblast differentiation in vivo and in vitro: expression of focal adhesion components in neonatal and adult rat ventricular myofibroblasts. Dev Dyn, 2010,239(6):1573–1584

    Article  CAS  PubMed  Google Scholar 

  36. Zhao S, Wu H, **a W, et al. Periostin expression is upregulated and associated with myocardial fibrosis in human failing hearts. J Cardiol, 2014,63(5):373–378

    Article  PubMed  Google Scholar 

  37. Braitsch CM, Kanisicak O, van Berlo JH, et al. Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease. J Mol Cell Cardiol, 2013,65:108–119

    Article  CAS  PubMed  Google Scholar 

  38. van Nieuwenhoven FA, Turner NA. The role of cardiac fibroblasts in the transition from inflammation to fibrosis following myocardial infarction. Vascul Pharmacol, 2013,58(3):182–188

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-he Zhu.

Ethics declarations

The authors declare no conflict of interest in this study.

Additional information

This work was supported by grants from the National Natural Science Foundation of China (No. 81441016) and Key R&D Plan in Shaanxi Province of China (No. 2020SF-262 and No. 2019SF-200).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Xf., Li, Q., Sun, X. et al. Calcitriol Suppressed Isoproterenol-induced Proliferation of Cardiac Fibroblasts via Integrin β3/FAK/Akt Pathway. CURR MED SCI 43, 48–57 (2023). https://doi.org/10.1007/s11596-022-2681-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-022-2681-6

Key words

Navigation