Log in

Microstructure Characteristics and Elevated Temperature Mechanical Properties of a B Contained β-solidified γ-TiAl Alloy

  • Metallic Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The improved microstructure and enhanced elevated temperature mechanical properties of Ti-44Al-5Nb-(Mo, V, B) alloys were obtained by vacuum arc re-melting (VAR) and primary annealing heat treatment (HT) of 1 260 °C/6 h/Furnace cooling (FC). The phase transformation, microstructure evolution and tensile properties for as-cast and HTed alloys were investigated. Results indicate that three main phase transformation points are determined, Teut=1 164.3 °C, Tγ solv = 1 268.3 °C and Tβ trans = 1 382.8 °C. There are coarse lamellar colonies (300 µm in length) and neighbor reticular B2 and γ grain (3–5 µm) in as-cast alloy, while lamellar colonies are markedly refined and multi-oriented (20–50 µm) as well as the volume fraction and grain sizes of equiaxed γ and B2 phases (about 15 µm) significantly increase in as-HTed alloy. Phase transformations involving α+γ→α+γ+β/B2 and discontinuous γ coarsening contribute to the above characteristics. Borides (1–3 µm) act as nucleation sites for βeutectic and produce massive β grains with different orientations, thus effectively refining the lamellar colonies and forming homogeneous multi-phase microstructure. Tensile curves show both the alloys exhibit suitable performance at 800 °C. As-cast alloy shows a higher ultimate tensile stress of 647 MPa, while a better total elongation of more than 41% is obtained for as-HTed alloy. The mechanical properties improvement is mainly attributed to fine, multi-oriented lamellar colonies, coordinated deformation of homogeneous multi-phase microstructure and borides within lamellar interface preventing crack propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Appel F, Clemens H, Fischer F D. Modeling Concepts for Intermetallic Titanium Aluminides[J]. Prog. Mater. Sci., 2016, 81: 55–124

    Article  CAS  Google Scholar 

  2. Duan B H, Yang Y C, He S Y, et al. History and Development of γ-TiA Alloys and the Effect of Alloying Elements on Their Phase Transformations[J]. J. Alloys Compd., 2022, 909: 164 811

    Article  CAS  Google Scholar 

  3. LEYENS C, PETERS M. Titanium and Titanium Alloys: Fundamentals and Applications[M]. Weinheim: Wiley-VCH, 2003

    Book  Google Scholar 

  4. Clemens H, Mayer S. Microstructure, Properties and Applications of Advanced Intermetallic TiAl Alloys[J]. Adv. Eng. Mater., 2013, 15: 191–215

    Article  CAS  Google Scholar 

  5. Chen G, Peng Y, Zheng G, et al. Polysynthetic Twinned TiAl Single Crystals for High-temperature Applications[J]. Nat. Mater., 2016, 15: 876–881

    Article  CAS  PubMed  Google Scholar 

  6. Liu B, Li J, Hu D. Solidification and Grain Refinement in Ti(48–50) Al2Mn2Nb1B Alloys[J]. Intermetallics, 2018, 101: 99–107

    Article  CAS  Google Scholar 

  7. Bewlay B P, Nag S, Suzuki A, et al. TiAl Alloys in Commercial Aircraft Engines[J]. Mater. High Temp., 2016, 33: 549–559

    Article  CAS  Google Scholar 

  8. Zhang D D, Bao L Y, Li Q, et al. Microstructure Evolution and Properties of Powder Metallurgy Ti43Al9V0.3Y Alloy Sheets at Different Rolling Temperatures[J]. Mater. Sci. Eng. A, 2023, 866: 144 685

    Article  CAS  Google Scholar 

  9. Zheng G M, Tang B, Zhao S K, et al. Breaking the High-temperature Strength-ductility Trade-off in TiAl Alloys Through Microstructural Optimization[J]. Int. J. Plast., 2023, 170: 103 756

    Article  CAS  Google Scholar 

  10. Ding J, Zhang M H, Liang Y F, et al. Enhanced High-temperature Tensile Property by Gradient Twin Structure of Duplex High-Nb-containing TiAl Alloy[J]. Acta Mater., 2018, 161: 1–11

    Article  CAS  Google Scholar 

  11. Liu G H, Li X Z, Su Y Q, et al. Microstructure, Microsegregation Pattern and The Formation of B2 Phase in Directionally Solidified Ti-46Al-8Nb Alloy[J]. J. Alloy Compd., 2012, 541: 275–282

    Article  CAS  Google Scholar 

  12. Yang K, Yang Z J, Deng P, et al. Microstructure and Mechanical Properties of As-cast-TiAl Alloys with Different Cooling Rates[J]. J. Mater. Eng. Perform., 2019, 28: 1–10

    Article  Google Scholar 

  13. Tang B, Wang W Y, **ang L, et al. Metadynamic Recrystallization Behavior of β-solidified TiAl Alloy During Post-annealing after Hot Deformation[J]. Intermetallics, 2020, 117: 106 679

    Article  CAS  Google Scholar 

  14. Yue H, Peng H, Li R, et al. Effect of Heat Treatment on the Microstructure and Anisotropy of Tensile Properties of TiAl Alloy Produced via Selective Electron Beam Melting[J]. Mater. Sci. Eng. A, 2021, 803: 140 473

    Article  CAS  Google Scholar 

  15. Xu X, Ding H, Huang H. Microstructure and Elevated Temperature Tensile Property of Ti-46Al-7Nb-(W,Cr,B) Alloy Compared with Binary and Ternary TiAl Alloy[J]. Mater. Sci. Eng. A, 2021, 807: 140 902

    Article  CAS  Google Scholar 

  16. Oehring M, Stark A, Paul J D H, et al. Microstructural Refinement of Boron-containing β-solidifying γ-titanium Aluminide Alloys through Heat Treatments in the β Phase Field[J]. Intermetallics, 2013, 32: 12–20

    Article  CAS  Google Scholar 

  17. Li M A, Li J, Zhou T, et al. Microstructure Evolution, Deformation Behavior and Manufacture Design of TiAl Matrix Composites Reinforced with In-situ Borides Precipitation[J]. T. Nonferr. Metal Soc., 2023, 33: 107–127

    Article  Google Scholar 

  18. Schwaighofer E, Schloffer M, Schmoelzer T, et al. Influence of Heat Treatments on the Microstructure of A Multi-phase Titanium Aluminide Alloy[J]. Practical Metallography, 2012, 49: 124–137

    Article  CAS  Google Scholar 

  19. Cheng L, Zhang S, Yang G, et al. Tailoring Microstructure and Mechanical Performance of A β-solidifying TiAl Alloy via Martensitic Transformation[J]. Mater. Charact., 2021, 173: 110 970

    Article  CAS  Google Scholar 

  20. Wu X. Review of Alloy and Process Development of TiAl Alloys[J]. Intermetallics, 2006, 14: 1 114–1 122

    Article  CAS  Google Scholar 

  21. Hecht U, Witusiewicz V, Drevermann A, et al. Grain Refinement by Low Boron Additions in Niobium-rich TiAl-based Alloys[J]. Intermetallics, 2008, 16: 969–978

    Article  CAS  Google Scholar 

  22. Bernal D, Chamorro X, Hurtado I, et al. Effect of Boron Content and Cooling Rate on the Microstructure and Boride Formation of β-Solidifying γ-TiAl TNM Alloy[J]. Metals, 2020, 10: 698

    Article  CAS  Google Scholar 

  23. Schwaighofer E, Clemens H, Mayer S. Microstructural Design and Mechanical Properties of A Cast and Heat Treated Intermetallic Multiphase γ-TiAl Based Alloy[J]. Intermetallics, 2014, 44: 128–140

    Article  CAS  Google Scholar 

  24. Lapin J, Pelachová T, Bajana O. High Temperature Deformation Behaviour and Microstructure of Cast In-situ TiAl Matrix Composite Reinforced with Carbide Particles[J]. J. Alloy. Compd., 2019, 797: 754–765

    Article  CAS  Google Scholar 

  25. Hu D. Effect of Composition on Grain Refinement in TiAl-based Alloys[J]. Intermetallics, 2001, 9: 1 037–1 043

    Article  CAS  Google Scholar 

  26. Liu G H, Li T R, Wang X Q, et al. Effect of Alloying Additions on Work Hardening, Dynamic Recrystallization, and Mechanical Properties of Ti-44Al-5Nb-1Mo Alloys During Direct Hot-pack Rolling[J]. Mater. Sci. Eng. A, 2020, 773: 138 838

    Article  CAS  Google Scholar 

  27. Yang G, Ren W, Liu Y H, et al. Effect of Pre-deformation in the β Phase Field on the Microstructure and Texture of the a Phase in a Boron-added β-solidifying TiAl Alloy[J]. J. Alloy. Compd., 2018, 742: 304–311

    Article  CAS  Google Scholar 

  28. ** Y, Wang J N, Yang J, et al. Microstructure Refinement of Cast TiAl Alloys by β Solidification[J]. Scripta Mater., 2004, 51: 113–117

    Article  CAS  Google Scholar 

  29. Chen R, Liu Y, Xue X, et al. Study on Improving Microstructure and Mechanical Properties of Directionally Solidified Ti44Al6Nb1Cr Alloy by Cyclic DHT[J]. Mater. Sci. Eng. A, 2021, 809: 140 912

    Article  CAS  Google Scholar 

  30. Liang X P, Liu Y, Li H Z, et al. An Investigation on Microstructural and Mechanical Properties of Powder Metallurgical TiAl Alloy During Hot Pack-rolling[J]. Mater. Sci. Eng. A, 2014, 619: 265–273

    Article  CAS  Google Scholar 

  31. Li T R, Liu G H, Xu M, et al. Effects of Hot-pack Rolling Process on Microstructure, High-temperature Tensile Properties, and Deformation Mechanisms in Hot-pack Rolled Thin Ti-44Al-5Nb-(Mo, V, B) Sheets[J]. Mater. Sci. Eng. A, 2019, 764: 138 197

    Article  CAS  Google Scholar 

  32. Huang Z W, Lin J P, Zhao Z X, et al. Fatigue Response of A Grain Refined TiAl Alloy Ti-44Al-5Nb-1W-1B with Varied Surface Quality and Thermal Exposure History[J]. Intermetallics, 2017, 85: 1–14

    Article  CAS  Google Scholar 

  33. Wan Z P, Sun Y, Hu L X, et al. Dynamic Softening Behavior and Microstructural Characterization of TiAl-based Alloy During Hot Deformation[J]. Mater. Charact., 2017, 130: 25–32

    Article  CAS  Google Scholar 

  34. Li J B, Liu Y, Liu B, et al. High Temperature Deformation Behavior of Near γ-phase High Nb-containing TiAl Alloy[J]. Intermetallics, 2014, 52: 49–56

    Article  Google Scholar 

  35. Yang C, Jiang H, Hu D, et al. Effect of Boron Concentration on Phase Transformation Texture in As-solidified Ti44Al8NbxB[J]. Scripta Mater., 2012, 67: 85–88

    Article  CAS  Google Scholar 

  36. APPEL F, PAUL J, OEHRING M. Gamma Titanium Aluminide Alloys: Science and Technology[M]. Weinheim: Wiley-VCH, 2011

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohuai Liu  (刘国怀).

Ethics declarations

All authors declare that there are no competing interests.

Additional information

Funded by the National Natural Science Foundation of China (No.52071065) and Fundamental Research Funds for the Central Universities (No.N2007007)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Guo, R., Liu, G. et al. Microstructure Characteristics and Elevated Temperature Mechanical Properties of a B Contained β-solidified γ-TiAl Alloy. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 39, 738–746 (2024). https://doi.org/10.1007/s11595-024-2932-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-024-2932-4

Key words

Navigation