Log in

Damage Mechanism of Ultra-thin Asphalt Overlay (UTAO) based on Discrete Element Method

  • Organic Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method (DEM), we conducted study of diseases problems of UTAO in several provinces in China, and found that aggregate spalling was one of the main disease types of UTAO. A discrete element model of UTAO pavement structure was constructed to explore the meso-mechanical mechanism of UTAO damage under the influence of layer thickness, gradation, and bonding modulus. The experimental results show that, as the thickness of UTAO decreasing, the maximum value and the mean value of the contact force between all aggregate particles gradually increase, which leads to aggregates more prone to spalling. Compared with OGFC-5 UTAO, AC-5 UTAO presents smaller maximum and average values of all contact forces, and the loading pressure in AC-5 UTAO is fully diffused in the lateral direction. In addition, the increment of pavement modulus strengthens the overall force of aggregate particles inside UTAO, resulting in aggregate particles peeling off more easily. The increase of bonding modulus changes the position where the maximum value of the tangential force appears, whereas has no effect on the normal force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ren JL, Zhang L, Zhao HB, et al. Determination of the Fatigue Equation for the Cement-stabilized Cold Recycled Mixtures with Road Construction Waste Materials Based on Data-driven[J]. International Int. J. Fatigue, 2022, 158: 106765

    Article  Google Scholar 

  2. Gong MY, Zhang HT, Liu ZQ, et al. Study on PQI Standard for ComPrehensive Maintenance of Asphalt Pavement Based on Full-cycle[J]. Int. J. Pavement Eng, 2021: 1–14

  3. Li XL, Ye JH, Badjona Y, et al. Preparation and Performance of Colored Ultra-Thin Overlay for Preventive Maintenance[J]. Constr. Build. Mater., 2020, 249: 118619

    Article  CAS  Google Scholar 

  4. Li F, Feng JY, Li YX, et al. Thin Overlay and Ultra-Thin Overlay[M]. Preventive Maintenance Technology for Asphalt Pavement, 2021: 103–127

  5. Zhang HJ, Li H, Zhang Y, et al. Performance Enhancement of Porous Asphalt Pavement Using Red Mud as Alternative Filler[J]. Constr. Build. Mater., 2018, 160: 707–713

    Article  Google Scholar 

  6. Liu ZM, Wang XM, Luo S, et al. Asphalt Mixture Design for Porous Ultra-thin Overlay[J]. Constr. Build. Mater., 2019, 217(2019): 251–264

    Article  Google Scholar 

  7. Ding LT, Wang XC, Zhang KX, et al. Durability Evaluation of Easy Compaction and High-durability Ultra-thin Overlay[J]. Constr. Build. Mater., 2021, 302: 124407

    Article  CAS  Google Scholar 

  8. Im S, You T, Kim Y-R, et al. Evaluation of Thin-lift Overlay Pavement Preservation Practice: Mixture Testing, Pavement Performance, and Lifecycle Cost Analysis[J]. Transp. Eng. J., Part B: Pavements, 2018, 144(3): 04018037

    Article  Google Scholar 

  9. Pan YY, Shang Y, Liu GQ, et al. Cost-effectiveness Evaluation of Pavement Maintenance Treatments Using Multiple Regression and Life-cycle Cost Analysis[J]. Constr. Build. Mater., 2021, 292: 123461

    Article  Google Scholar 

  10. Li JS, Zhu Z, Ke L, et al. Rheological Performance Investigation of High Viscosity Liquid Asphalt[J]. Road Mater. Pavement Des., 2020, 22(12): 2 674–2 688

    Article  Google Scholar 

  11. Liu ZM, Luo S, Quan X, et al. Laboratory Evaluation of Performance of Porous Ultra-thin Overlay[J]. Constr. Build. Mater., 2019, 204(2019): 28–40

    Article  Google Scholar 

  12. Yu JM, Chen FD, Deng W, et al. Design and Performance of High-toughness Ultra-thin Friction Course in South China[J]. Constr. Build. Mater., 2020, 246: 118508

    Article  Google Scholar 

  13. Hu MJ, Li LH, Peng FX. Laboratory Investigation of OGFC-5 Porous Asphalt Ultra-thin Wearing Course[J]. Constr. Build. Mater., 2019, 219(2019): 101–110

    Article  Google Scholar 

  14. Zhang JW, Huang WD, Zhang Y, et al. Investigation on the Durability of OGFC-5 Ultra-thin Friction Course with Different Mixes[J]. Constr. Build. Mater., 2021, 288: 123049

    Article  Google Scholar 

  15. Jiang W, Yuan DD, Shan JH, et al. Experimental Study of the Performance of Porous Ultra-thin Asphalt Overlay[J]. Int. J. Pavement Eng., 2020: 1–13

  16. Chen DH, Scullion T. Very Thin Overlays in Texas[J]. Constr. Build. Mater., 2015, 95: 108–116

    Article  Google Scholar 

  17. Labp S, Lamptey G, Konduri S, et al. Analysis of Long-term Effectiveness of Thin Hot-mix Asphaltic Concrete Overlay Treatments[J]. Transport. Res. Rec., 2005, 1940(1): 2–12

    Article  Google Scholar 

  18. Ren JL, Yin C. Investigating Mechanical Characteristics of Aggregate Structure for Road Materials[J]. Int. J. Pavement Eng., 2020, 23(2): 372–386

    Article  Google Scholar 

  19. Xu YS, Jiang YJ, Xue JS, et al. Investigating the Effect of Aggregate Characteristics on the Macroscopic and Microscopic Fracture Mechanisms of Asphalt Concrete at Low-temperature[J]. Mater., 2019, 12(17): 2 675

    Article  CAS  Google Scholar 

  20. Yan ZY, Liang JH, Bai YM, et al. Response of Asphalt Pavement Structure Layer and Particle Movement Velocity Based on Particle Flow Theory[J]. J. Constr. Eng. and M., 2021, 147(12): 04021170

    Article  Google Scholar 

  21. Liu GQ, Han DD, Zhao YL, et al. Effects of Asphalt Mixture Structure Types on Force Chains Characteristics Based on Computational Granular Mechanics[J]. Int. J. Pavement Eng., 2020: 1–17

  22. Xu JJ, Li N, Xu T. Temperature Changes of Interlaminar Bonding Layer in Different Seasons and Effects on Mechanical Properties of Asphalt Pavement[J]. Int. J. Pavement Res. Tech., 2022, 15(3): 589–605

    Article  Google Scholar 

  23. Xu J, Kong CW, Xu T. Displacemental and Mesomechanical Responses of Semi-flexible Pavement Based on Discrete Element Method[J]. Int. J. Pavement Res. Tech., 2021: 1–14

  24. Ren JL, Xu YS, Zhao ZD, et al. Fatigue Prediction of Semi-flexible Composite Mixture Based on Damage Evolution[J]. Constr. Build. Mater., 2022, 318: 126004

    Article  Google Scholar 

  25. He DL, Cheng YH. Numerical Simulation for Mechanical Behavior of Asphalt Pavement with Graded Aggregate Base[J]. Adv. Civ. Eng., 2018, 2018: 1–9

    CAS  Google Scholar 

  26. Zhu D, Jia XY. Analysis and Simulation of Interlayer Damages in Asphalt Pavement Overlay Cement Concrete Slab[M]. Pavements and Materials: Recent Advances in Design, Testing and Construction, 2011: 192–199

  27. Si CD, Zhou XD, You ZP, et al. Micro-mechanical Analysis of High Modulus Asphalt Concrete Pavement[J]. Constr. Build. Mater., 2019, 220: 128–141

    Article  Google Scholar 

  28. Yan ZY, Chen EH, Wang ZM, et al. Research on Mesoscopic Response of Asphalt Pavement Structure under Vibration Load[J]. Shock and Vibration, 2019, 2019: 1–13

    Google Scholar 

  29. Yan ZY, Wang Z, Chen JX, et al. Micromechanical Response of Asphalt Pavement under Temperature-vehicle Load[J]. Journal of Bei**g Jiaotong University, 2020, 44(3): 118–128

    Google Scholar 

  30. Khavassefat P, Jelagin D, Birgisson B. Dynamic Response of Flexible Pavements at Vehicle-road Interaction[J]. Road Mater. Pavement Des., 2014, 16(2): 256–276

    Article  Google Scholar 

  31. Xu OM, Cao ZF, Li MY, et al. Review of Ultra-thin Overlay Asphalt Concrete Application and Development[J]. China Sciencepaper, 2020, 15(4): 7

    Google Scholar 

  32. Ren JL, Zhao HB, Zhang L, et al. Design Optimization of Cement Grouting Material Based on Adaptive Boosting Algorithm and Simplicial Homology Global Optimization[J]. J. Build. Eng., 2022, 49: 104049

    Article  Google Scholar 

  33. Zhao ZF, Guan X, **ao FP, et al. Applications of Asphalt Concrete Overlay on Portland Cement Concrete Pavement[J]. Constr. Build. Mater., 2020, 264: 120045

    Article  Google Scholar 

  34. Shi K, Zhang YF, Gao YL, et al. Effects of Adhesives on Properties and Mechanism of the Ultra-thin Pavement[J]. Road Mater. Pavement Des., 2021, 22(5): 1 140–1 159

    Article  CAS  Google Scholar 

  35. Ministry of Transport of the People’s Republic of China. Technical Standards of the Chinese Technical Specifications for Construction of Highway Asphalt Pavements[S]. JTG F40–2004, China Communications Press, Bei**g, China, 2004

    Google Scholar 

  36. Liu Y, You ZP. Discrete-Element Modeling: Impacts of Aggregate Sphericity, Orientation, and Angularity on Creep Stiffness of Idealized Asphalt Mixtures[J]. J. Eng. Mech., 2011, 137(4): 294–303

    Article  Google Scholar 

  37. Ministry of Transport of the People’s Republic of China. Specifications for Design of Highway Asphalt Pavement[S]. JTG D50–2017, China Communications Press, Bei**g, China, 2017

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Lin  (林宏伟).

Ethics declarations

All authors declare that there are no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, X., Gao, L., Rao, F. et al. Damage Mechanism of Ultra-thin Asphalt Overlay (UTAO) based on Discrete Element Method. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 39, 473–486 (2024). https://doi.org/10.1007/s11595-024-2903-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-024-2903-9

Key words

Navigation