Log in

Synthesis of Organic-Inorganic Hybrid Aluminum Hypophosphite Microspheres Flame Retardant and Its Flame Retardant Research on Thermoplastic Polyurethane

  • Organic Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Aluminum hypophosphite microspheres (AHP) were synthesized by hydrothermal method using NaH2PO2-H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of micro-nanospheres with cyclic cross-linked poly(cyclotriphosphazene-co-4. 4′-sulfonyldiphenol) (PZS). A new organic-inorganic poly(phosphonitrile)-modified aluminum hypophosphite microspheres (PZS-AHP) were synthesized by encapsulation and applied to flame retardant thermoplastic polyurethane (TPU). The microstructure and chemical composition of the PZS-AHP microsphere were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray spectroscopy. The thermal stability of PZS-AHP microsphere was explored with thermogravimetric analysis. Thermogravimetric data indicate that the PZS-AHP microspheres have excellent thermal stability. The thermal and flame-retarding properties of the TPU composites were evaluated by thermogravimetric (TG), limited oxygen index tests (LOI), and cone calorimeter test (CCT). The TPU composite achieved vertical burning (UL-94) V-0 grade and LOI value reached 29.2% when 10 wt% PZS-AHP was incorporated. Compared with those of pure TPU, the peak heat release rate (pHRR) and total heat release (THR) of TPU/10%PZS-AHP decreased by 82.2% and 42.5%, respectively. The results of CCT indicated that PZS-AHP microsphere could improve the flame retardancy of TPU composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tabuani D, Bellucci F, Terenzi A, et al. Flame Retarded Thermoplastic Polyurethane (Tpu) for Cable Jacketing Application[J]. Polym. Degrad. Stabil., 2012, 97(12): 2 594–2 601

    Article  CAS  Google Scholar 

  2. Choi J, Jang J U, Yin W B, et al. Synthesis of Highly Functionalized Thermoplastic Polyurethanes and Their Potential Applications[J]. Polymer, 2017, 116: 287–294

    Article  CAS  Google Scholar 

  3. Jiao CM, Wang HZ, Li SX, et al. Fire Hazard Reduction of Hollow Glass Microspheres in Thermoplastic Polyurethane Composites[J]. J. Hazard. Mater., 2017, 332: 176–184

    Article  CAS  Google Scholar 

  4. Wang XC, Geng T, Han J, et al. Effects of Nanoclays on the Thermal Stability and Flame Retardancy of Microcellular Thermoplastic Polyurethane Nanocomposites[J]. Polym. Composite., 2018, 39(S3): E1 429–E1 440

    Article  CAS  Google Scholar 

  5. Kemmlein S, Herzke D, Law R J. Brominated Flame Retardants in the European Chemicals Policy of Reach—Regulation and Determination in Materials[J]. J. Chromatogr. A, 2009, 1216(3): 320–333

    Article  CAS  Google Scholar 

  6. Wei P, Wu D, Zhong HF, et al. Effect of Flame Retardant Containing Phosphorus and Silicone on Thermal Performance of Pc/Abs[J]. J. Wuhan Univ. Technol.-Mat. Sci. Edit., 2009, 24(2): 235–240

    Article  CAS  Google Scholar 

  7. Zeng LJ, Yang L, Ai LH, et al. Synergistic Flame Retardant Effect of Ammonium Polyphosphate and Aluminum Hydroxide on Polyurethane[J]. J. Wuhan Univ. Technol. -Mat. Sci. Edit., 2022, 37(3): 533–539

    Article  CAS  Google Scholar 

  8. Lin YQ, Jiang SH, Hu Y, et al. Hybrids of Aluminum Hypophosphite and Ammonium Polyphosphate: Highly Effective Flame Retardant System for Unsaturated Polyester Resin[J]. Polym. Composite., 2018, 39(5): 1 763–1 770

    Article  CAS  Google Scholar 

  9. Wu NJ, **u ZX. Surface Microencapsulation Modification of Aluminum Hypophosphite and Improved Flame Retardancy and Mechanical Properties of Flame-Retardant Acrylonitrile-Butadiene-Styrene Composites[J]. RSC Adv., 2015, 5(61): 49 143–49 152

    Article  CAS  Google Scholar 

  10. Shi YQ, Fu LB, Chen XL, et al. Hypophosphite/Graphitic Carbon Nitride Hybrids: Preparation and Flame-Retardant Application in Thermoplastic Polyurethane[J]. Nanomaterials, 2017, 7(9): 259–271

    Article  Google Scholar 

  11. Yang W, Song L, Hu Y, et al. Enhancement of Fire Retardancy Performance of Glass-Fibre Reinforced Poly(Ethylene Terephthalate) Composites with the Incorporation of Aluminum Hypophosphite and Melamine Cyanurate[J]. Compos. B. Eng., 2011, 42(5): 1 057–1 065

    Article  Google Scholar 

  12. Yang W, Hu Y, Tai QL, et al. Fire and Mechanical Performance of Nanoclay Reinforced Glass-Fiber/Pbt Composites Containing Aluminum Hypophosphite Particles[J]. Compos. Part A: Appl. Sci. Manuf., 2011, 42(7): 794–800

    Article  Google Scholar 

  13. Braun U, Schartel B, Fichera MA, et al. Flame Retardancy Mechanisms of Aluminium Phosphinate in Combination with Melamine Polyphosphate and Zinc Borate in Glass-Fibre Reinforced Polyamide 6, 6[J]. Polym. Degrad. Stabil., 2007, 92(8): 1 528–1 545

    Article  CAS  Google Scholar 

  14. Li QF, Li B, Zhang SQ, et al. Investigation on Effects of Aluminum and Magnesium Hypophosphites on Flame Retardancy and Thermal Degradation of Polyamide 6[J]. J. Appl. Polym. Sci., 2012, 125(3): 1 782–1 789

    Article  CAS  Google Scholar 

  15. Zhao B, Chen L, Long JW, et al. Aluminum Hypophosphite versus Alkyl-Substituted Phosphinate in Polyamide 6: Flame Retardance, Thermal Degradation, and Pyrolysis Behavior[J]. Ind. Eng. Chem. Res., 2013, 52(8): 2 875–2 886

    Article  CAS  Google Scholar 

  16. Tang G, Wang X, **ng WY, et al. Thermal Degradation and Flame Retardance of Biobased Polylactide Composites Based On Aluminum Hypophosphite[J]. Ind. Eng. Chem. Res., 2012, 51(37): 12 009–12 016

    Article  CAS  Google Scholar 

  17. Li YY, Li XM, Pan YT, et al. Mitigation the Release of Toxic Ph3 and the Fire Hazard of Pa6/Ahp Composite by Mofs[J]. J. Hazard. Mater., 2020, 395: 122 604

    Article  CAS  Google Scholar 

  18. Liu XD, Sun J, Zhang S, et al. Effects of Carboxymethyl Chitosan Microencapsulated Melamine Polyphosphate on the Flame Retardancy and Water Resistance of Thermoplastic Polyurethane[J]. Polym. Degrad. Stabil., 2019, 160: 168–176

    Article  CAS  Google Scholar 

  19. Wen PY, Wang D, Liu JJ, et al. Organically Modified Montmorillonite as a Synergist for Intumescent Flame Retardant Against the Flammable Polypropylene[J]. Polym. Advan. Technol., 2017, 28(6): 679–685

    Article  CAS  Google Scholar 

  20. Yuan BH, Sun YR, Chen XF, et al. Poorly-/Well-Dispersed Graphene: Abnormal Influence on Flammability and Fire Behavior of Intumescent Flame Retardant[J]. Compos. Part A: Appl. Sci. Manuf., 2018, 109: 345–354

    Article  CAS  Google Scholar 

  21. Wu K, Zhang YK, Hu WG, et al. Influence of Ammonium Polyphosphate Microencapsulation on Flame Retardancy, Thermal Degradation and Crystal Structure of Polypropylene Composite[J]. Compos. Sci. Technol., 2013, 81: 17–23

    Article  CAS  Google Scholar 

  22. Chen C, Liu X, Tian ZC, et al. Trichloroethoxy-Substituted Polyphosphazenes: Synthesis, Characterization, and Properties[J]. Macromolecules., 2012, 45(22): 9 085–9 091

    Article  CAS  Google Scholar 

  23. Tian ZC, Hess A, Fellin CR, et al. Phosphazene High Polymers and Models with Cyclic Aliphatic Side Groups: New Structure-Property Relationships[J]. Macromolecules, 2015, 48(13): 4 301–4 311

    Article  CAS  Google Scholar 

  24. Gleria M, de Jaeger R. Aspects of Phosphazene Research[J]. J. Inorg. Organomet. Polym., 2001, 11(1): 1–45

    Article  CAS  Google Scholar 

  25. Henke H, Brüggemann O, Teasdale I. Branched Macromolecular Architectures for Degradable, Multifunctional Phosphorus-Based Polymers[J]. Macromol. Rapid Comm., 2017, 38(4): 1 600 644

    Article  Google Scholar 

  26. Pan QC. Phosphazene Compound Comprising Cyano Group, Preparation Method and Uses Thereof[P]. US201797998, 2017

  27. Xu LF, Lei CH, Xu RJ, et al. Hybridization of α-Zirconium Phosphate with Hexachlorocyclotriphosphazene and Its Application in the Flame Retardant Poly (Vinyl Alcohol) Composites[J]. Polym. Degrad. Stabil., 2016, 133: 378–388

    Article  Google Scholar 

  28. Qiu SL, Ma C, Wang X, et al. Melamine-Containing Polyphosphazene Wrapped Ammonium Polyphosphate: A Novel Multifunctional Organic-Inorganic Hybrid Flame Retardant[J]. J. Hazard. Mater., 2018, 344(1): 839–848

    Article  CAS  Google Scholar 

  29. Zhou X, Qiu SL, **ng WY, et al. Hierarchical Polyphosphazene@Molybdenum Disulfide Hybrid Structure for Enhancing the Flame Retardancy and Mechanical Property of Epoxy Resins[J]. ACS Appl. Mater Inter., 2017, 9(34): 29 147–29 156

    Article  CAS  Google Scholar 

  30. Xu LF, Lei CH, Xu RJ, et al. Functionalization of α-Zirconium Phosphate by Polyphosphazene and Its Effect on the Flame Retardance of an Intumescent Flame Retardant Polypropylene System[J]. RSC Adv., 2016, 6(81): 77 545–77 552

    Article  CAS  Google Scholar 

  31. Qiu SL, Zhou YF, Zhou X, et al. Air-Stable Polyphosphazene-Functionalized Few-Layer Black Phosphorene for Flame Retardancy of Epoxy Resins[J]. Small., 2019, 15(10): 1 805 175

    Article  Google Scholar 

  32. Li T, Li S, Ma TJ, et al. Novel Organic-Inorganic Hybrid Polyphosphazene Modified Manganese Hypophosphite Shuttles Towards the Fire Retardance and Anti-Drip** of Pet[J]. Eur. Polym. J., 2019, 120: 109 270

    Article  Google Scholar 

  33. Zhao SS, He M, Song WY, et al. Synthesis of a Phosphorus/Nitrogen/Sulphur Containing Phosphazene Micro-Nanotube and Its Flame Retardancy on Epoxy Nanocomposite[J]. Chem. J. Chinese U., 2017, 38(12): 2 337–2 343

    Google Scholar 

  34. Zhu ZM, Lin PL, Wang H, et al. A Facile One-Step Synthesis of Highly Efficient Melamine Salt Reactive Flame Retardant for Epoxy Resin[J]. J. Mater. Sci., 2020, 55(27): 12 836–12 847

    Article  CAS  Google Scholar 

  35. Liu J, Tang JY, Wang XD, et al. Synthesis, Characterization and Curing Properties of a Novel Cyclolinear Phosphazene-Based Epoxy Resin for Halogen-Free Flame Retardancy and High Performance[J]. RSC Adv., 2012, 2(13): 5 789–5 799

    Article  CAS  Google Scholar 

  36. Sun J, Wang XD, Wu DZ. Novel Spirocyclic Phosphazene-Based Epoxy Resin for Halogen-Free Fire Resistance: Synthesis, Curing Behaviors, and Flammability Characteristics[J]. ACS Appl. Mater. Inter., 2012, 4(8): 4 047–4 061

    Article  CAS  Google Scholar 

  37. Xue BX, Niu M, Yang YZ, et al. Influence of Graphitization Degree of Carbon Microspheres on Properties of Pet Flame Retardant[J]. Polym. Eng. Sci., 2018, 58(8): 1 399–1 408

    Article  CAS  Google Scholar 

  38. Bai YW, Wang XD, Wu DZ. Novel Cyclolinear Cyclotriphosphazene-Linked Epoxy Resin for Halogen-Free Fire Resistance: Synthesis, Characterization, and Flammability Characteristics[J]. Ind. Eng. Chem. Res., 2012, 51(46): 15 064–15 074

    Article  CAS  Google Scholar 

  39. Liu H, Wang XD, Wu DZ. Novel Cyclotriphosphazene-Based Epoxy Compound and Its Application in Halogen-Free Epoxy Thermosetting Systems: Synthesis, Curing Behaviors, and Flame Retardancy[J]. Polym. Degrad. Stabil., 2014, 103: 96–112

    Article  CAS  Google Scholar 

  40. Liu H, Wang XD, Wu DZ. Preparation, Isothermal Kinetics, and Performance of a Novel Epoxy Thermosetting System Based on Phosphazene-Cyclomatrix Network for Halogen-Free Flame Retardancy and High Thermal Stability[J]. Thermochim. Acta., 2015, 607: 60–73

    Article  CAS  Google Scholar 

  41. Zhang T, Cai Q, Wu DZ, et al. Phosphazene Cyclomatrix Network Polymers: Some Aspects of the Synthesis, Characterization, and Flame-Retardant Mechanisms of Polymer[J]. J. Appl. Polym. Sci., 2005, 95(4): 880–889

    Article  CAS  Google Scholar 

  42. Li ZQ, Lu CJ, **a ZP, et al. X-Ray Diffraction Patterns of Graphite and Turbostratic Carbon[J]. Carbon, 2007, 45(8): 1 686–1 695

    Article  CAS  Google Scholar 

  43. Du HF, Ai W, Zhao ZL, et al. Engineering Morphologies of Cobalt Pyrophosphates Nanostructures Toward Greatly Enhanced Electrocatalytic Performance of Oxygen Evolution Reaction[J]. Small., 2018, 14(31): 1 801 068

    Article  Google Scholar 

  44. Zhou X, Li J, Wu YG. Synergistic Effect of Aluminum Hypophosphite and Intumescent Flame Retardants in Polylactide[J]. Polym. Advan. Technol., 2015, 26(3): 255–265

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Xu  (许莉莉).

Ethics declarations

All authors declare that there are no competing interests.

Additional information

Supported by the Opening Project of Hubei Three Gorges Laboratory (No.SK213008) and the Innovation Fund of Key Laboratory of Green Chemical Process of Ministry of Education (No. GCXP202109)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Xu, Z., Zhang, X. et al. Synthesis of Organic-Inorganic Hybrid Aluminum Hypophosphite Microspheres Flame Retardant and Its Flame Retardant Research on Thermoplastic Polyurethane. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 39, 221–233 (2024). https://doi.org/10.1007/s11595-024-2875-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-024-2875-9

Key words

Navigation