Log in

Strength Characteristics of Treated Soil with Proposed Layer Formation

  • Cementitious Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The engineering characteristics of the soil, soil-fly ash and fly ash-lime, were examined to utilize as base layer material in civil construction. The influence of fly ash percentage and the effect of curing on California bearing ratio (CBR) and unconfined compressive strength (UCS), of soil and soil - fly ash mixing and layered system were examined to estimate the optimum quantity. The volumetric swelling of the optimal mixture was estimated to be within the allowable limits. Scanning microscope analysis and X-ray diffraction tests were performed. A model test analyses with three layers were conducted by finite element method and stress-strain behavior was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poran C J, Ahtchi-Ali F. Properties of Solid Waste Incinerator Fly Ash[J]. Journal of Geotechnical Engineering, 1989, 115(8): 1 118–1 133

    Article  Google Scholar 

  2. Kumar P, Singh S P. Fiber-Reinforced Fly Ash Subbases in Rural Roads[J]. Journal of Transportation Engineering, 2008, 134(4): 171–180

    Article  Google Scholar 

  3. Poran C J, Ahtchi-Ali F. Properties of Solid Waste Incinerator Fly Ash[J]. Journal of Geotechnical Engineering, 1989, 115(8): 1 118–1 133

    Article  Google Scholar 

  4. Aimin X, Sarkar S L. Microstructural Study of Gypsum Activated Fly Ash Hydration in Cement Paste[J]. Cement and Concrete Research, 1991, 21(6): 1 137–1 147

    Article  Google Scholar 

  5. Consoli N C, Rosa A D, Saldanha R B. Variables Governing Strength of Compacted Soil-fly Ash-lime Mixtures[J]. Journal of Materials in Civil Engineering, 2011, 23(4): 432–440

    Article  CAS  Google Scholar 

  6. Sivapullaiah P, Moghal A. CBR and Strength Behavior of Class F Fly Ashes Stabilized with Lime and Gypsum[J]. International Journal of Geotechnical Engineering, 2011, 5(2): 121–130

    Article  CAS  Google Scholar 

  7. Ghosh A, Subbarao C. Strength Characteristics of Class F Fly Ash Modified with Lime and Gypsum[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(7): 757–766

    Article  CAS  Google Scholar 

  8. Fraay A, Bijen J M, Vogelaar P. Cement-stabilized Fly Ash Base Courses[J]. Cement and Concrete Composites, 1990, 12(4): 279–291

    Article  CAS  Google Scholar 

  9. Sobhan K, Mashnad M. Tensile Strength and Toughness of Soil-cement-fly-ash Composite Reinforced with Recyled High-density Polyethylene Strips[J]. Journal of Materials in Civil Engineering, 2002, 14(2): 177–184

    Article  Google Scholar 

  10. Bhowmik A, Sahoo U C. Characterization of Cement Stabilised Flyash for Use as Structural Layer in Rural Road Pavements[M]. Lecture Notes in Civil Engineering. Singapore: Springer Singapore, 2019

    Google Scholar 

  11. Kaniraj S R, Havanagi V G. Compressive Strength of Cement Stabilized Fly Ash-soil Mixtures[J]. Cement and Concrete Research, 1999, 29(5): 673–677

    Article  CAS  Google Scholar 

  12. Bera A K, Chandra S N, Ghosh A, et al. Unconfined Compressive Strength of Fly Ash Reinforced with Jute Geotextiles[J]. Geotextiles and Geomembranes, 2009, 27(5): 391–398

    Article  Google Scholar 

  13. Guleria S P, Dutta R K. Unconfined Compressive Strength of Fly Ashlime-gypsum Composite Mixed with Treated Tire Chips[J]. Journal of Materials in Civil Engineering, 2011, 23(8): 1 255–1 263

    Article  CAS  Google Scholar 

  14. Das S K, Yudhbir. Geotechnical Characterization of Some Indian Fly Ashes[J]. Journal of Materials in Civil Engineering, 2005, 17(5): 544–552

    Article  CAS  Google Scholar 

  15. Jones G. Analysis of Beams on Elastic Foundations[M]. London: Thomas Telford Services Ltd, 1997

    Book  Google Scholar 

  16. Sivakumar N, Manda A, Karumanchi S R, et al. Effect of Fly Ash Layer Addition on the Bearing Capacity of Expansive Soil[J]. Emerging Materials Research, 2020, 9(4): 1 088–1 102

    Article  Google Scholar 

  17. ASTM. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use[S]. ASTM Standards C618, 2015

  18. ASTM. Standard Test Method for Particle-Size Analysis of Soils[J]. ASTM D422–63, 2007

  19. ASTM. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12, 400 ft-lbf/ft 3 (600 kN-m/m3)) 1[S]. ASTM D698, 2003

  20. Raymond S. Pulverized Fuel Ash As Embankment Material[J]. Proceedings of the Institution of Civil Engineers, 1961, 19(4): 515–536

    Article  Google Scholar 

  21. DiGioia A M, Nuzzo W L. Fly Ash as Structural Fill[J]. Journal of the Power Division, 1972, 98(1): 77–92

    Article  Google Scholar 

  22. Indraratna B, Nutalaya P, Koo K S, et al. Engineering Behaviour of a Low Carbon, Pozzolanic Fly Ash and Its Potential as a Construction Fill[J]. Canadian Geotechnical Journal, 1991, 28(4): 542–555

    Article  CAS  Google Scholar 

  23. Karumanchi S R, Mandal A. Moisture Variations and Its Effect on Shrinkage and Swelling Characteristics of Unsaturated Soil[J]. European Journal of Environmental and Civil Engineering, 2018, 8189: 1–17

    Google Scholar 

  24. Karumanchi S R, Singh D K, Mandal A. Study on Swelling and Shrinkage Behaviour of Unsaturated Soils from Material Characteristics[J]. Road Materials and Pavement Design, Taylor & Francis, 2020, 21(5): 1 274–1 292

    Article  CAS  Google Scholar 

  25. ASTM. Standard Test Methods for Wetting and Drying Compacted Soil-Cement Mixtures[S]. ASTM D559, 2003

  26. Ahmed A, Ugai K. Environmental Effects on Durability of Soil Stabilized with Recycled Gypsum[J]. Cold Regions Science and Technology, 2011, 66(2–3): 84–92

    Article  Google Scholar 

  27. Georgees R N, Hassan R A, Evans R P. A Potential Use of a Hydrophilic Polymeric Material to Enhance Durability Properties of Pavement Materials[J]. Construction and Building Materials, 2017, 148: 686–695

    Article  CAS  Google Scholar 

  28. Bhurtel A, Eisazadeh A. Strength and Durability of Bottom Ash and Lime Stabilized Bangkok Clay[J]. KSCE Journal of Civil Engineering, 2020, 24(2): 404–411

    Article  Google Scholar 

  29. Patel D, Kumar R, Chauhan K, et al. Effects of Stabilization on Engineering Characteristics of Fly Ash as Pavement Subbase Material[M]. Lecture Notes in Civil Engineering, Singapore: Springer Singapore, 2019

    Google Scholar 

  30. ASTM. Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted[S]. ASTM D, 2014

  31. DassaultSystèmes. Abaqus Documentation 6.14[EB/OL]. 2014. http://byg-cls04.win.dtu.dk:2080/v6.14/books/usi/default.htm?startat=ap01s01.html#usi-kwb-browser.

  32. Kang X, Ge L, Kang G C, et al. Laboratory Investigation of the Strength, Stiffness, and Thermal Conductivity of Fly Ash and Lime Kiln Dust Stabilised Clay Subgrade Materials[J]. Road Materials and Pavement Design, 2015, 16(4): 928–945

    Article  CAS  Google Scholar 

  33. Saha S, Pal S K. Influence of Fly Ash on Unconfined Compressive Strength of Soil and Fly Ash Layers Placed Successively[J]. Electronic Journal of Geotechnical Engineering, 2013, 18 H: 15 931 602

    Google Scholar 

  34. Indian Roads Congress. Guidelines for the Design of Flexible Pavements[S]. IRC: 37, 2018

  35. Indian Roads Congress. Guidelines for Soil and Granular Meterial Stabilization using Cement, Lime and Fly Ash[S]. IRC: SP: 89, 2010

  36. Araya A A, Huurman M, Molenaar A A A, et al. Investigation of the Resilient Behavior of Granular Base Materials with Simple Test Apparatus[J]. Materials and Structures/Materiaux et Constructions, 2012, 45(5): 695–705

    Google Scholar 

  37. Mendoza C, Caicedo B. Elastoplastic Framework of Relationships between CBR and Young’s Modulus for Granular Material[J]. Road Materials and Pavement Design, 2018, 19(8): 1 796–1 815

    Article  CAS  Google Scholar 

  38. Helwany S. Applied Soil Mechanics with ABAQUS Applications[M]. New York: John Wiley & Sons., 2007

    Book  Google Scholar 

  39. Wu D, She W, Wei L, et al. Stabilization Mechanism of Calcium Lignosulphonate Used in Expansion Sensitive Soil[J]. Journal Wuhan University of Technology -Materials Science Edition, 2020, 35(5): 847–855

    Article  CAS  Google Scholar 

  40. Miao S, Shen Z, Wang X, et al. Stabilization of Highly Expansive Black Cotton Soils by Means of Geopolymerization[J]. Journal of Materials in Civil Engineering, 2017, 29(10): 1–9

    Article  Google Scholar 

  41. Murmu A L, Jain A, Patel A. Mechanical Properties of Alkali Activated Fly Ash Geopolymer Stabilized Expansive Clay[J]. KSCE Journal of Civil Engineering, 2019, 23(9): 3 875–3 888

    Article  Google Scholar 

  42. Yalçin H, Gümüşer G. Mineralogical and Geochemical Characteristics of Late Cretaceous Bentonite Deposits of the Kelkit Valley Region, Northern Turkey[J]. Clay Minerals, 2000, 35(5): 807–825

    Article  Google Scholar 

  43. Keller W D. Classification of Kaolins Exemplified by Their Textures in Scan Electron Micrographs[J]. Clays and Clay Minerals, 1978, 26(1): 1–20

    Article  CAS  Google Scholar 

  44. Deng Z, Wang W, Lu G, et al. Effect of New Hardening Accelerator on the Strength of Segment Concrete[J]. Journal Wuhan University of Technology -Materials Science Edition, 2021, 36(3): 387–391

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mandal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivakumar, N., Mandal, A. & venkatraman, S. Strength Characteristics of Treated Soil with Proposed Layer Formation. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 38, 117–135 (2023). https://doi.org/10.1007/s11595-023-2674-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-023-2674-z

Key words

Navigation