Log in

Effect of Polyaniline/manganese Dioxide Composite on the Thermoelectric Effect of Cement-based Materials

  • Cementitious Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

To enhance the thermoelectric effect of cement-based materials, conductive polyaniline (PANI) modified MnO2 powder was synthesized and used as a thermoelectric component in the cement composites. The nanostructured PANI was deposited on the surface of the nanorod-shaped α-MnO2 particle and the weight ratio of PANI to MnO2 was 22.3:77.7 in the composite. The synthesized PANI/MnO2 composite was nanostructured according to the SEM image. The test results of the thermoelectric properties proved that the PANI/MnO2 composite was effective as the Seebeck coefficient and electrical conductivity values of the cement composites with PANI/MnO2 inside were 3–4 orders of magnitude higher than those of pure cement paste and the thermal conductivity values of these cement samples were similar. The obtained maximum figure of merit (ZT) value (2.75×10−3) was much larger than that of conductive materials reinforced cement-based composites. The thermoelectric effect of cement composites is mainly enhanced by the increased Seebeck coefficient and electrical conductivity in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Han B, Qiao G, Jiang H. Piezoresistive Response Extraction for Smart Cement-Based Composites/Sensors[J]. J. Wuhan Univ. Technol.-Mat. Sci. Edit., 2012, 27: 754–757

    Article  Google Scholar 

  2. Chen B, Liu J Y. Damage in Carbon Fiber-Reinforced Concrete, Monitored by both Electrical Resistance Measurement and Acoustic Emission Analysis[J]. Constr. Build. Mater., 2008, 22(11): 2 196–2 201

    Article  Google Scholar 

  3. Chen B, Liu J Y, Wu K R. Electrical Response of Carbon Fiber Reinforced Cementitious Composites to Monotonic and Cyclic Loading[J]. Cem. Concr. Res., 2005, 35(11): 2 183–2 191

    Article  CAS  Google Scholar 

  4. Chung D D L. Electrically Conductive Cement-Based Materials[J]. Adv. Cem. Res., 2004, 16(4): 167–176

    Article  CAS  Google Scholar 

  5. Chen B, Wu K, Yao W. Conductivity of Carbon Fiber Reinforced Cement-Based Composites[J]. Cem. Concr. Compos., 2004, 26(4): 291–297

    Article  Google Scholar 

  6. Dai Y, Sun M, Liu C, et al. Electromagnetic Wave Absorbing Characteristics of Carbon Black Cement-Based Composites[J]. Cement Concr. Compos., 2010, 32(7): 508–513

    Article  CAS  Google Scholar 

  7. Guan H T, Liu S H, Duan Y P, et al. Cement Based Electromagnetic Shielding and Absorbing Building Materials[J]. Cement Concr. Compos., 2006, 28(5): 468–474

    Article  CAS  Google Scholar 

  8. Chung D D L. Cement-Based Electronics[J]. J. Electroceram., 2001, 6(1): 75–88

    Article  CAS  Google Scholar 

  9. Zhu J, Tong X., Niu S, et al. Effects of Magnetization on Thermoelectric Transport Properties of CoSb3 Material[J]. J. Wuhan Univ. Technol.-Mat. Sci. Edit., 2021, 36: 353–357

    Article  CAS  Google Scholar 

  10. Wang Z, Wang Z, Ning M, et al. Electro-Thermal Properties and Seebeck Effect of Conductive Mortar and Its Use in Selfheating and Self-Sensing System[J]. Ceram. Int., 2017, 43(12): 8 685–8 693

    Article  CAS  Google Scholar 

  11. Wen S, Chung D D L. Seebeck Effect in Carbon Fiber Reinforced Cement[J]. Cem. Concr. Res., 1999, 29(12): 1 989–1 993

    Article  CAS  Google Scholar 

  12. Wen S, Chung D D L. Seebeck Effect in Steel Fiber Reinforced Cement[J]. Cem. Concr. Res., 2000, 30(4): 661–664

    Article  CAS  Google Scholar 

  13. Sun M, Li Z, Mao Q, et al. Thermoelectric Percolation Phenomenon in Carbon Fiber-Reinforced Concrete[J]. Cem. Concr. Res., 1998, 28(12): 1 707–1 712

    Article  CAS  Google Scholar 

  14. Wen S, Chung D D L. Enhancing the Seebeck Effect in Carbon Fiber Reinforced Cement by Using Intercalated Carbon Fibers[J]. Cem. Concr. Res., 2000, 30(8): 1 295–1 298

    Article  CAS  Google Scholar 

  15. Demirel B, Yazicioglu S. Thermoelectric Behavior of Carbon Fiber Reinforced Lightweight Concrete with Mineral Admixtures[J]. N. Carbon Mater., 2008, 23(1): 21–24

    Article  CAS  Google Scholar 

  16. Wei J, Zhang Q, Zhao L, et al. Enhanced Thermoelectric Properties of Carbon Fiber Reinforced Cement Composites[J]. Ceram. Int., 2016, 42(10): 11 568–11 573

    Article  CAS  Google Scholar 

  17. Zuo J, Yao W, Liu X, et al. Sensing Properties of Carbon Nanotube-carbon Fiber/Cement Nanocomposites[J]. J. Test. Eval., 2012, 40(5): 838–843

    Article  CAS  Google Scholar 

  18. Tzounis L, Liebscher M, Fuge R, et al. P- and N-type Thermoelectric Cement Composites with CVD Grown P- and N-doped Carbon Nanotubes: Demonstration of a Structural Thermoelectric Generator[J]. Energ. Buildings, 2019, 191: 151–163

    Article  Google Scholar 

  19. Wei J, Fan Y, Zhao L, et al. Thermoelectric Properties of Carbon Nanotube Reinforced Cement-Based Composites Fabricated by Compression Shear[J]. Ceram. Int., 2018, 44: 5 829–5 833

    Article  CAS  Google Scholar 

  20. Ghosh S, Harish S, Rocky K A, et al. Graphene Enhanced Thermoelectric Properties of Cement Based Composites for Building Energy Harvesting[J]. Energ. Buildings, 2019, 202: 109 419

    Article  Google Scholar 

  21. Ghosh S, Harish S, Ohtaki M, et al. Enhanced Figure of Merit of Cement Composites with Graphene and ZnO Nanoinclusions for Efficient Energy Harvesting in Buildings[J]. Energy, 2020, 198: 117 396

    Article  CAS  Google Scholar 

  22. Wei J, Zhao L, Zhang Q, et al. Enhanced Thermoelectric Properties of Cement-Based Composites with Expanded Graphite for Climate Adaptation and Large-scale Energy Harvesting[J]. Energ. Buildings, 2018, 159: 66–74

    Article  Google Scholar 

  23. Yao W, **a Q. Preparation and Thermoelectric Properties of Bismuth Telluride/Carbon Fiber Reinforced Cement Composites[J]. Gongneng Cailiao, 2014, 45: 15 134–15 137 (in chinese)

    CAS  Google Scholar 

  24. Wei J, Hao L, He G, et al. Thermoelectric Power of Carbon Fiber Reinforced Cement Composites Enhanced by Ca3Co4O9[J]. Appl. Mech. Mater., 2013, 320: 354–357

    Article  Google Scholar 

  25. Wei J, Hao L, He G, et al. Enhanced Thermoelectric Effect of Carbon Fiber Reinforced Cement Composites by Metallic Oxide/Cement Interface[J]. Ceram. Int., 2014, 40: 8 261–8 263

    Article  CAS  Google Scholar 

  26. Ghaharia S, Ghafaria E, Lu N. Effect of ZnO Nanoparticles on Thermoelectric Properties of Cement Composite for Waste Heat Harvesting[J]. Constr. Build. Mater., 2017, 146: 755–763

    Article  Google Scholar 

  27. Ji T, Zhang X, Li W H. Enhanced Thermoelectric Effect of Cement Composite by Addition of Metallic Oxide Nanopowders for Energy Harvesting in Buildings[J]. Constr. Build. Mater., 2016, 115: 576–581

    Article  CAS  Google Scholar 

  28. Ji T, Zhang X, Zhang X, et al. Effect of Manganese Dioxide Nanorods on the Thermoelectric Properties of Cement Composites[J]. J. Mater. Civ. Eng., 2018, 30: 04 018 224

    Article  Google Scholar 

  29. Hutagalung S D, Sahrol N H, Ahmad Z A, et al. Effect of MnO2 Additive on the Dielectric and Electromagnetic Interference Shielding Properties of Sintered Cement-Based Ceramics[J]. Ceram. Int., 2012, 38(1): 671–678

    Article  CAS  Google Scholar 

  30. Ghafari E, Ghahari S A, Feng Y, et al. Effect of Zinc Oxide and Al-Zinc Oxide Nanoparticles on the Rheological Properties of Cement Paste[J]. Compos. Part B: Eng., 2016, 105: 160–166

    Article  CAS  Google Scholar 

  31. Pichanusakorn P, Bandaru P. Nanostructured Thermoelectrics[J]. Mat. Sci. Eeg. R., 2010, 67: 19–63

    Article  Google Scholar 

  32. Lan Y, Minnich A J, Chen G, et al. Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach[J]. Adv. Funct. Mater., 2010, 20(3): 357–376

    Article  CAS  Google Scholar 

  33. Hicks L D, Dresselhaus M S. Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit[J]. Phys. Rev. B, 1993, 47(19): 12 727–12 731

    Article  CAS  Google Scholar 

  34. Tong T, Fu D, Levander A X, et al. Suppression of Thermal Conductivity in Inx-Ga1−xN Alloys by Nanometer-Scale Disorder[J]. Appl. Phys. Lett., 2013, 102(12): 121 906

    Article  Google Scholar 

  35. Walia S, Balendhran S, Nili H, et al. Transition Metal Oxides-Thermoelectric Properties[J]. Prog. Mater. Sci., 2013, 58: 1 443–1 489

    Article  CAS  Google Scholar 

  36. Feng Y, Jiang X, Ghafari E, et al. Metal Oxides for Thermoelectric Power Generation and Beyond[J]. Adv. Compos. Hybrid Mater., 2017, 1(1): 1–13

    Google Scholar 

  37. Preisler E. Semiconductor Properties of Manganese Dioxide[J]. J. Appl. Electrochem., 1976, 6: 311–320

    Article  CAS  Google Scholar 

  38. **a X, Li H, Chen Z H. The Study of Semiconduction Properties of γ-MnO2 with Different Degrees of Reduction[J]. J. Electrochem. Soc., 1989, 136: 266–271

    Article  CAS  Google Scholar 

  39. Walia S, Balendhran S, Yi P, et al. MnO2-based Thermopower Wave Sources with Exceptionally Large Output Voltages[J]. J. Phys. Chem. C, 2013, 117: 9 137–9 142

    Article  CAS  Google Scholar 

  40. Farid Ul Islam A K M, Islam R, Khan K A. Studies of the Thermoelectric Effect in Semiconducting MnO2 Thin Films[J]. J. Mater. Sci. Mater. Electron., 2005, 16: 203–207

    Article  CAS  Google Scholar 

  41. Hedden M, Francis N, Haraldsen J T, et al. Thermoelectric Properties of Nano-Meso-Micro β-MnO2 Powders as a Function of Electrical Resistance[J]. Nanoscale Res. Lett., 2015, 10: 292–300

    Article  Google Scholar 

  42. Song F F, Wu L, Liang S. Giant Seebeck Coefficient Thermoelectric Device of MnO2 Powder[J]. Nanotechnology, 2012, 23: 1–5

    Article  Google Scholar 

  43. Walia S, Balendhran S, Nili H, et al. Transition Metal Oxides: Thermoelectric Properties[J]. Prog. Mater. Sci., 2013, 58(8): 1 443–1 489

    Article  CAS  Google Scholar 

  44. Chen B, Wu K, Yao W. Conductivity of Carbon Fiber Reinforced Cement-based Composites[J]. Cement Concr. Compos., 2004, 26(4): 291–297

    Article  Google Scholar 

  45. Liu J, Zhang L, He L, et al. Synthesis and Thermoelectric Properties of Polyaniline [J]. J. Wuhan Univ. Technol.-Mat. Sci. Edit., 2003, 18: 53–55

    Article  CAS  Google Scholar 

  46. Zhang H, Wu X H, Wang X L. Conductivity Mechanism of Asphalt Concrete with the PANI/PP Compound Conductive Fiber[J]. Mater. Sci. Forum, 2011, 689: 69–73

    Article  CAS  Google Scholar 

  47. Meng Q, Chung D D L. Battery in the Form of a Cement-Matrix Composite[J]. Cement Concr. Compos., 2010, 32(10): 829–839

    Article  CAS  Google Scholar 

  48. Banthia N, Djeridane S, Pigeon M. Electrical Resistivity of Carbon and Steel Micro-fiber Reinforced Cements[J]. Cem. Concr. Res., 1992, 22(5): 804–814

    Article  CAS  Google Scholar 

  49. Yu L, Gan M, Ma L, et al. Facile Synthesis of MnO2/Polyaniline Nanorod Arrays Based on Graphene and Its Electrochemical Performance[J]. Synth. Met., 2014, 198: 167–174

    Article  CAS  Google Scholar 

  50. Niu Z, Yang Z, Hu Z, et al. Polyaniline-Silica Composite Conductive Capsules and Hollow Spheres[J]. Adv. Funct. Mater., 2003, 13: 949–954

    Article  CAS  Google Scholar 

  51. Jiang Y, Cui X, Zu L, et al. High Rate Performance Nanocomposite Electrode of Mesoporous Manganese Dioxide/Silver Nanowires in KI Electrolytes[J]. Nanomaterials, 2015, 5: 1 638–1 653

    Article  CAS  Google Scholar 

  52. Wang H, Lu Z, Qian D, et al. Single-Crystal α-MnO2 Nanorods: Synthesis and Electrochemical Properties[J]. Nanotechnology, 2007, 18(11): 115 616

    Article  Google Scholar 

  53. Kang X, Zhu X, Qian J, et al. Effect of Graphene Oxide (GO) on Hydration of Tricalcium Silicate (C3S) [J]. Constr. Build. Mater., 2019, 203: 514–524

    Article  CAS  Google Scholar 

  54. Zheng B, Lin Y H, Lan J L, et al. Thermoelectric Properties of Ca3Co4O9/Polyaniline Composites[J]. J. Mater. Sci. Technol., 2014, 30: 423–426

    Article  CAS  Google Scholar 

  55. Baldenebrolopez F J, Castorenagonzalez J H, Baldenebrolopez J A, et al. Cement-Matrix Composites Reinforced with Carbon Fibers as a Multifunctional Material[J]. Microsc. Microanaly, 2014, 20(s3): 1 880–1 881

    Article  Google Scholar 

Download references

Funding

Funded by the National Natural Science Foundation of China (Nos.51525903, 51808369 and 52078247), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No.20KJB560005), the Science Foundation of Nan**g Institute of Technology (No.YKJ201929)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi** Zhang  (张士萍).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, T., Liao, X., He, Y. et al. Effect of Polyaniline/manganese Dioxide Composite on the Thermoelectric Effect of Cement-based Materials. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 38, 109–116 (2023). https://doi.org/10.1007/s11595-023-2673-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-023-2673-0

Key words

Navigation