Log in

Preparation and Performance of Graphene Oxide Modified Polyurethane Thermal Conductive Insulating Adhesive

  • Organic Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

A novel graphene oxide (GO) modified polyurethane thermal conductive insulating adhesive with small addition and excellent insulation properties was prepared by in-situ polymerization using GO as thermal conductive filler. The effects of GO content on the mechanical performance, thermal conductivity, thermal stability and insulation properties of the modified polyurethane adhesive were studied. The results showed that the tensile strength and elongation at break of polyurethane adhesive increased at first and then decreased with the increase of GO content. The thermal conductivity and thermal decomposition temperature of GO/PU composite adhesive can be effectively improved by adding appropriate amount of GO. The tensile strength, thermal conductivity and thermal decomposition temperature of polyurethane adhesive reached the maximum when GO content was 1.5 wt%. The novel GO-modified polyurethane adhesive exhibited good insulation property. The development of GO/PU thermal conductive adhesive will provide a facile method for effectively solving the “trade-off” problem between low filling and high thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choi S, Im H, Kim J. Flexible and High Thermal Conductivity Thin Films Based on Polymer: Aminated Multi-Walled Carbon Nanotubes/ Micro-aluminum Nitride Hybrid Composites[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(11): 1 860–1 868

    Article  CAS  Google Scholar 

  2. Sato N, Ogushi T, Wakasugi N, et al. Uncertainty Factor for Improving Thermal Conductivity Measurement Accuracy of High Thermal Conductive Materials[J]. Journal of Japan Institute of Electronics Packaging, 2019, 22(2): 164–171

    Google Scholar 

  3. Xu X, Zhou J, Chen J. Thermal Transport in Conductive Polymer-based Materials[J]. Advanced Functional Materials, 2020, 30(8): 1 904 704

    Article  CAS  Google Scholar 

  4. Chen H, Ginzburg V V, Yang J, et al. Thermal Conductivity of Polymer-based Composites: Fundamentals and Applications[J]. Progress in Polymer Science, 2016, 59: 41–85

    Article  CAS  Google Scholar 

  5. Choi S, Park S, Huh H. PU-RGO Composite: Effect of Chain Extender’s Structure on Properties[J]. Journal of Nanoscience & Nanotechnology, 2017, 17(10): 7 480–7 484

    Article  CAS  Google Scholar 

  6. Chang K J, Wang Y Z, Peng K C, et al. Preparation of Silica Aerogel/ Polyurethane Composites for the Application of Thermal Insulation[J]. Journal of Polymer Research, 2014, 21(1): 338–347

    Article  Google Scholar 

  7. Fan Y, Na J, Mu W, et al. Effect of Hygrothermal Cycle Aging on The Mechanical Behavior of Single-lap Adhesive Bonded Joints[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2019, 34(2): 337–344

    Article  Google Scholar 

  8. Nazeran N, Moghaddas J. Synthesis and Characterization of Silica Aerogel Reinforced Rigid Polyurethane Foam for Thermal Insulation Application[J]. Journal of Non-Crystalline Solids, 2017, 461: 1–11

    Article  CAS  Google Scholar 

  9. Osman M A, Mittal V, Morbidelli M, et al. Polyurethane Adhesive Nanocomposites as Gas Permeation Barrier[J]. Macromolecules, 2003, 36(26): 9 851–9 858

    Article  CAS  Google Scholar 

  10. Wołosiak-Hnat A, Zych K, Mężyńska M, et al. The Influence of Type and Concentration of Inorganic Pigments on The Polyurethane Adhesive Properties and Adhesion of Laminates[J]. International Journal of Adhesion and Adhesives, 2019, 90: 1–8

    Article  Google Scholar 

  11. Li D, Müller M B, Gilje S, et al. Processable Aqueous Dispersions of Graphene Nanosheets[J]. Nature Nanotechnology, 2008, 3(2): 101–105

    Article  CAS  Google Scholar 

  12. Kim J, Cote L J, Huang J. Two-dimensional Soft Material: New Faces of Graphene Oxide[J]. Accounts of Chemical Research, 2012, 45(8): 1 356–1 364

    Article  CAS  Google Scholar 

  13. Wang X, Hu Y, Song L, et al. In Situ Polymerization of Graphene Nanosheets and Polyurethane with Enhanced Mechanical and Thermal Properties[J]. Journal of Materials Chemistry, 2011, 21(12): 4 222–4 227

    Article  CAS  Google Scholar 

  14. Li Y, Pan D, Chen S, et al. In situ Polymerization and Mechanical, Thermal Properties of Polyurethane/graphene Oxide/epoxy Nanocomposites[J]. Materials & Design, 2013, 47: 850–856

    Article  CAS  Google Scholar 

  15. Li Y, Tian H, Zhang J, et al. Fabrication and Properties of Rigid Polyurethane Nanocomposite Foams with Functional Isocyanate Modified Graphene Oxide[J]. Polymer Composites, 2020, 41(12): 5 126–5 134

    Article  CAS  Google Scholar 

  16. Zhang Y, Hu J. Robust Effects of Graphene Oxide on Polyurethane/Tourmaline Nanocomposite Fiber[J]. Polymers, 2020, 13(1): 16

    Article  CAS  Google Scholar 

  17. Zahid M, Nawab Y, Gulzar N, et al. Fabrication of Reduced Graphene Oxide (RGO) and Nanocomposite with Thermoplastic Polyurethane (TPU) for EMI Shielding Application[J]. Journal of Materials Science Materials in Electronics, 2020, 31: 967–974

    Article  CAS  Google Scholar 

  18. Pashupati P, Dai S. Thermal and Mechanical Properties of Reduced Graphene Oxide/Polyurethane Nanocomposite[J]. Journal of Nanoscience and Nanotechnology, 2014, 14: 5 718–5 721

    Article  Google Scholar 

  19. Lin J, Zhang P, Zheng C, et al. Reduced Silanized Graphene Oxide/Epoxy-Polyurethane Composites with Enhanced Thermal and Mechanical Properties[J]. Applied Surface Science, 2014, 316: 114–123

    Article  CAS  Google Scholar 

  20. Guoxing L, **gshan Z, Ke S, et al. Study on Mechanical Property and Thermal Stability of In-situ Nanocomposites of Polyurethane/Oxidized Graphene[J]. Chinese Journal of Materials Research, 2014, 12: 901–908

    Google Scholar 

  21. Bandyopadhyay P, Park W B, Layek R K, et al. Hexylamine Functionalized Reduced Graphene Oxide/Polyurethane Nanocomposite-coated Nylon for Enhanced Hydrogen Gas Barrier Film[J]. Journal of Membrane Science, 2016, 500: 106–114

    Article  CAS  Google Scholar 

  22. Yu B, Wang X, **ng W, et al. UV-Curable Functionalized Graphene Oxide/Polyurethane Acrylate Nanocomposite Coatings with Enhanced Thermal Stability and Mechanical Properties[J]. Industrial & Engineering Chemistry Research, 2012, 51(45): 14 629–14 636

    Article  CAS  Google Scholar 

  23. Sadeghianmaryan A, Karimi Y, Naghieh S, et al. Electrospinning of Scaffolds from the Polycaprolactone/ Polyurethane Composite with Graphene Oxide for Skin Tissue Engineering[J]. Applied Biochemistry and Biotechnology, 2019, 191(3): 567–578

    Google Scholar 

  24. Wang Y, Chen X, Zhu W, et al. A Comparison of Thermoplastic Polyurethane Incorporated with Graphene Oxide and Thermally Reduced Graphene Oxide: Reduction is Not Always Necessary[J]. Journal of Applied Polymer Science, 2019, 136(28): 47 745

    Article  Google Scholar 

  25. Boutar Y, Naimi S, Mezlini S, et al. Fatigue Resistance of An Aluminium One-Component Polyurethane Adhesive Joint for the Automotive Industry: Effect of Surface Roughness and Adhesive Thickness[J]. International Journal of Adhesion and Adhesives, 2018, 83: 143–152

    Article  CAS  Google Scholar 

Download references

Funding

Funded by the Liaoning Natural Science Fund Project (No.20180550432) and Liaoning Provincial Science and Technology Department Doctoral Research Start-Up Fund Project (No.2020-BS-158) and Liaoning Provincial Department of Education Fund Project (Nos.lnfw202014 and LJKQZ2021060)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Liu  (刘鹏).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Kang, X., Fan, Z. et al. Preparation and Performance of Graphene Oxide Modified Polyurethane Thermal Conductive Insulating Adhesive. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 37, 1025–1031 (2022). https://doi.org/10.1007/s11595-022-2627-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-022-2627-7

Key words

Navigation