Log in

Cross-scale Correlation of Macro-micro Evaluation Indexes for Asphalt Binder

  • Cementitious Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

In order to further study the reliability of macro evaluation indexes, molecular dynamics (MD) was applied to the evaluation of asphalt binder. Micro evaluation indexes (potential energy, surface free energy, solubility parameter and diffusion coefficient) of asphalt binder in different service phases (virgin, modified, aged and rejuvenated) were simulated. Combined with the variation characteristics of asphalt binder macro evaluation indexes (permeability, ductility, viscosity and softening point) in different service phases, the cross-scale correlation of macro-micro evaluation indexes was explored. The results show that the macro and micro evaluation indexes of asphalt binder have different characteristics in different service phases. The essence of the variation in the properties of asphalt binders is the difference in micro composition. In addition, there is a certain correlation between macro and micro evaluation indexes, which can be described by the gray relation theory. The cross-scale correlation of macro-micro evaluation indexes can provide a certain theoretical basis for the development of asphalt binder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ding Y H, Wu J, Xu P, et al. Treatment Methods for the Quality Improvement of Recycled Concrete Aggregate (RCA)-A Review[J]. J. Wuhan University of Technology-Mater. Sci. Ed., 2021, 36(01): 77–92

    Article  Google Scholar 

  2. Chen D, Han S, Ling C, et al. Prediction of Asphalt Mixture Surface Texture Level and Its Distributions Using Mixture Design Parameters[J]. Int. J. Pavement Eng., 2019, 20(5): 557–565

    Article  Google Scholar 

  3. Brasileiro L, Moreno-Navarro F, Tauste-Martínez R, et al. Reclaimed Polymers as Asphalt Binder Modifiers for More Sustainable Roads: A Review[J]. Sustainability, 2019, 11(3): 646

    Article  CAS  Google Scholar 

  4. Behnood A, Gharehveran M M. Morphology, Rheology, and Physical Properties of Polymer-Modified Asphalt Binders[J]. Eur. Polym. J., 2019, 112: 766–791

    Article  CAS  Google Scholar 

  5. Li H W, Wei W, Zhang C, et al. Hot Mixing Behavior and Curing Process of Epoxy Asphalt[J]. J. Wuhan Univ. Technol.-Mat. Sci. Edit., 2020, 35(3): 605–610

    Article  Google Scholar 

  6. Sun D Q, Yu F, Li L H, et al. Effect of Chemical Composition and Structure of Asphalt Binders on Self-healing[J]. Construction and Building Materials, 2017, 133: 495–501

    Article  CAS  Google Scholar 

  7. Zhou X X, Sun B, Wu S P, et al. Evaluation on Self-healing Mechanism and Hydrophobic Performance of Asphalt Modified by Siloxane and Polyurethane[J]. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 2019, 34(3): 630–637

    Article  CAS  Google Scholar 

  8. Zhang H T, Wang Y, Liu Z Q, et al. Study on Mechanical Behavior of Aging Asphalt Based on Composite Regeneration and Modification[J]. Adv. Mater. Sci. Eng., 2020: 1–11

  9. Liang R, ** R, Zhou D H, et al. Nonlinear Rheological Behaviors of Epoxy Asphalt Binder Compared to Base Asphalt Binder and SBS Modified Asphalt Binder at Above Ambient Temperatures[J]. Construction and Building Materials, 2020, 250(C): 118 755

    Article  CAS  Google Scholar 

  10. Qian C D, Fan W Y. Evaluation and Characterization of Properties of Crumb Rubber/SBS Modified Asphalt[J]. Mater. Chem. Phys., 2020, 253: 123 319

    Article  CAS  Google Scholar 

  11. Dong F Q, Fan W Y, Yang G M, et al. Dispersion of SBS and Its Influence on the Performance of SBS Modified Asphalt[J]. J. Test. Eval., 2014, 42(5): 1 073–1 080

    Article  CAS  Google Scholar 

  12. Alaye Q E A, Ling X Z, Dong Z J, et al. Evaluation of Mixture Performance Recycled Asphalt Pavement Materials as Base Layer with or without Rejuvenator into the Asphalt[J]. J. Wuhan Univ. Technol.-Mat. Sci. Edit., 2020, 35: 579–597

    Article  CAS  Google Scholar 

  13. Loise V, Caputo P, Porto M, et al. A Review on Bitumen Rejuvenation: Mechanisms, Materials, Methods and Perspectives[J]. Appl. Sci., 2019, 9(20): 4 316

    Article  CAS  Google Scholar 

  14. Noorvand H, Kamil K, Jose M, et al. Rejuvenation Mechanism of Asphalt Mixtures Modified with Crumb Rubber[J]. Civil Eng., 2021, 2(2): 370–384

    Google Scholar 

  15. Matolia S, Gudurua G, Gottumukkalah B, et al. An Investigation into the Influence of Aging and Rejuvenation on Surface Free Energy Components and Chemical Composition of Bitumen[J]. Construction and Building Materials, 2020, 245(C): 118 378

    Article  CAS  Google Scholar 

  16. Wang Y Y, Lu S, Qin Y X. Aging Mechanism of SBS Modified Asphalt Based on Chemical Reaction Kinetics[J]. Construction and Building Materials, 2015, 91: 47–56

    Article  Google Scholar 

  17. Hu K, Yu C H, Chen Y J, et al. Multiscale Mechanisms of Asphalt Performance Enhancement by Crumbed Waste Tire Rubber: Insight from Molecular Dynamics Simulation[J]. Journal of Molecular Modeling, 2021, 27(6): 170–170

    Article  CAS  Google Scholar 

  18. Guo F H, Zhang J P, Pei J Z, et al. Evaluation of the Compatibility between Rubber and Asphalt Based on Molecular Dynamics Simulation[J]. Frontiers of Structural and Civil Engineering, 2020, 14(2): 1–11

    Article  CAS  Google Scholar 

  19. Sun W, Wang H. Molecular Dynamics Simulation of Diffusion Coefficients between Different Types of Rejuvenator and Aged Asphalt Binder[J]. Int. J. Pavement Eng., 2020, 21(8): 966–976

    Article  CAS  Google Scholar 

  20. Zhang X R, Zhang F, Zhou X X, et al. Multi-Scale Evaluation of the Mechanical Properties of Asphalt Mortar under Different Aging Conditions[J]. Mol. Simul., 2021, 47(8): 688–699

    Article  CAS  Google Scholar 

  21. Zhang H T, Gong M Y, Sun X W. Research on Performance of Composite Regeneration and Modification Asphalt[J]. Highway, 2018, 63(1): 172–176 (in Chinese)

    Google Scholar 

  22. Zhang H L, Lu L, Chen Z H. Effect of Aging on the Rheological Behaviors of SBS-Modified Asphalt with Thermochromic Materials[J]. J. Test. Eval., 2021, 49(6): 4 032–4 039

    Article  CAS  Google Scholar 

  23. Ma T, Huang X M, Zhao Y L, et al. Compound Rejuvenation of Polymer Modified Asphalt Binder[J]. J. Wuhan Univ. Technol.-Mat. Sci. Edit., 2010, 25(6): 1 070–1 076

    Article  CAS  Google Scholar 

  24. Zhang X F, Zhang J, Cheng Z Q. Application of Response Surface Methodology to Optimize the Preparation of Rubber Foam Composite as Sound-Absorbing Material Using Scrap Rubber Powder[J]. J. Wuhan Univ. Technol.-Mat. Sci. Edit., 2019, 34(6): 1 376–1 383

    Article  CAS  Google Scholar 

  25. Ding Y J, Deng M, Cao X J, et al. Investigation of Mixing Effect and Molecular Aggregation between Virgin and Aged Asphalt[J]. Construction and Building Materials, 2019, 221: 301–307

    Article  CAS  Google Scholar 

  26. Frenkel D, Smit B. Understanding Molecular Simulation: From Algorithms to Applications[M]. New York: Academic Press, 2001

    Google Scholar 

  27. Tuckerman M. Statistical Mechanics: Theory and Molecular Simulation[M]. Oxford: Oxford University Press, 2010

    Google Scholar 

  28. Yao H, Liu J F, Xu M, et al. Discussion on Molecular Dynamics (MD) Simulations of the Asphalt Materials[J]. Advances in Colloid and Interface Science, 2022, 299: 102 565–102 565

    Article  CAS  Google Scholar 

  29. Lin Y J. Molecular Dynamics Study of Diffusion Behavior of Virgin and Recycled Asphalt Binder[D]. Nan**g: Southeast University, 2019. (in Chinese)

    Google Scholar 

  30. Yu T J, Zhang H T, Wang Y. Multi-gradient Analysis of Temperature Self-healing of Asphalt Nano-cracks Based on Molecular Simulation[J]. Construction and Building Materials, 2020, 250(C): 118 859

    Article  Google Scholar 

  31. Wang L, Zhang L, Liu Y. Compatibility of Rubber Powder and Asphalt in Rubber Powder Modified Asphalt by Molecular Dynamics[J]. Jianzhu Cailiao Xuebao/Journal of Building Materials, 2018, 21(4): 689–694

    CAS  Google Scholar 

  32. Beck T L, Michael E P, Lawrence R P. The Potential Distribution Theorem and Models of Molecular Solutions[M]. Cambridge: Cambridge University Press, 2006

    Book  Google Scholar 

  33. Zeng Z A, Zhang D R, Liu H Q. Development of an Energy-Based Framework to Determine The Surface Free Energy of Asphalt Binder: Theoretical Models[J]. Materials and Structures, 2021, 54(6): 1–15

    Article  Google Scholar 

  34. Xu, G J, Hao W. Study of Cohesion and Adhesion Properties of Asphalt Concrete with Molecular Dynamics Simulation[J]. Comput. Mater. Sci., 2016, 112: 161–169

    Article  Google Scholar 

  35. Ding Y J, Huang B S, Shu X, et al. Use of Molecular Dynamics to Investigate Diffusion between Virgin and Aged Asphalt Binders[J]. Fuel, 2016, 174: 267–273

    Article  CAS  Google Scholar 

  36. Michalet X. Mean Square Displacement Analysis of Single-particle Trajectories with Localization Error: Brownian Motion in an Isotropic Medium[J]. Physical Review E, 2010, 82(4): 041 914

    Article  Google Scholar 

  37. Yu M, Wu S P. Influence of the Heating Conditions on the Asphalt Compositions by Grey System Theory[J]. Advanced Materials Research, 2011, 306: 1 673–1 677

    Article  Google Scholar 

Download references

Funding

Funded by the Fundamental Research Funds for the Central Universities (No. 2572021AW10)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Zhang  (张海涛).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, T., Zhang, H., Sun, X. et al. Cross-scale Correlation of Macro-micro Evaluation Indexes for Asphalt Binder. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 37, 892–899 (2022). https://doi.org/10.1007/s11595-022-2611-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-022-2611-2

Key words

Navigation