Log in

Synthesis and characterization of biomimetic Fe3O4/coke magnetic nanoparticles composite material

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

A composite material (Fe3O4/Coke) using coke supported Fe3O4 magnetic nanoparticles was successfully prepared via an in-situ chemical oxidation precipitation method and characterized by SEM, XRD, Raman, and FTIR. The results showed that the Fe3O4 nanoparticles existed steadily on the surface of coke, with better dispersing and smaller particle size. The catalytic ability of Fe3O4/Coke were investigatied by degrading p-nitrophenol (P-NP). The results showed that the apparent rate constant for the P-NP at 1.0 g·L−1 catalyst, 30 mmol·L−1 H2O2, pH=3.0, 30 °C and the best ratio of Coke/Fe3O4 0.6, was evaluated to be 0.027 min–1, the removal rate of CODCr was 75.47%, and the dissolubility of Fe was 2.42 mg·L–1. Compared with pure Fe3O4, the catalytic ability of Fe3O4/Coke in the presence of H2O2 was greatly enhanced. And Fe3O4/Coke was a green and environmental catalyst with high catalytic activity, showing a good chemical stability and reusability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neuberger T, Schöpf B, Hofmann H, et al. Superparamagnetic Nanoparticles for Biomedical Applications: Possibilities and Limitations of A New Drug Delivery System[J]. J. Magn. Magn. Mater., 2005, 293: 483–496

    Article  Google Scholar 

  2. Portet D, Rump E, Lejeune JJ, et al. Nonpolymeric Coatings of Iron Oxide Colloids for Biological Use as Magnetic Resonance Imaging Contrast Agents[J]. J. Colloid Inter. Sci., 2001, 238: 37–42

    Article  Google Scholar 

  3. Ito A, Shinkai M, Honda H, et al. Augmentation of MHC Class I Antigen Presentation Via Heat Shock Protein Expression by Hyperthermia[J]. J. Biosci. Bioeng., 2005, 50: 515–522

    Google Scholar 

  4. Zhang Y, Chen YS, Westerhoff P, et al. Stability of Commercial Metal Oxide Nanoparticles in Water[J]. Water Res., 2008, 42(8-9): 2204–2212

    Article  Google Scholar 

  5. Pickrodt RV, Fuentesa MC, Carolina P, et al. Influence of Stirring Velocity on the Synthesis of Magnetite Nanoparticles (Fe3O4) by the Co-precipitation Method[J]. J. Alloy. Compd., 2009, 488: 227–231

    Article  Google Scholar 

  6. Bruce IJ, Taylor J, Todd M, et al. Synthesis, Characterisation and Application of Silica-magnetite Nanocomposites[J]. J. Magn. Magn. Mater., 2004, 284(1): 145–160

    Article  Google Scholar 

  7. Asuha S, Suyala B, Siqintana X, et al. Direct Synthesis of Fe3O4 Nanopowder by Thermal Decomposition of Fe-urea Complex and its Properties[J]. J. Alloy. Compd., 2011, 509(6): 2870–2873

    Article  Google Scholar 

  8. Hasanpour A, Niyaifar M, Asan M, et al. Synthesis and Characterization of Fe3O4 and ZnO Nanocomposites by the Sol-gel Method[J]. J. Magn. Magn. Mater., 2013, 334: 43–44

    Article  Google Scholar 

  9. Zubir NA, Yacou C, Motuzas J, et al. Structural and Functional Investigation of Graphene Oxide-Fe3O4 Nanocomposites for the Heterogeneous Fenton-like Reaction[J]. Sci. Rep-UK., 2014, 4: 4594

    Google Scholar 

  10. Shahamat YD, Farzadkia M, Nasseri S, et al. Magnetic Heterogeneous Catalytic Ozonation: A New Removal Method for Phenol in Industrial Wastewater[J]. J. Environ. Healt., 2014, 12: 50–61

    Google Scholar 

  11. Li SZ, Gong YB, Yang YC, et al. Bisphenol A from Water and their Regeneration[J]. Chem. Eng. J., 2015, 260: 231–239

    Article  Google Scholar 

  12. Wauters S, Marin GB. Computer Generation of a Network of Elementary Steps for Coke Formation during the Thermal Cracking of Hydrocarbons[J]. Chem. Eng. J., 2001, 82(1-3): 267–279

    Article  Google Scholar 

  13. Catak S, Hemelsoet IK, Hermosilla L, et al. Competitive Reactions of Organophosphorus Radicals on Coke Surfaces[J]. Chem-Eur. J., 2011, 17(43): 12027–12036

    Article  Google Scholar 

  14. Wan D, Li WB, Wang GH, et al. Adsorption and Heterogeneous Degradation of Rhodamine B on the Surface of Magnetic Bentonite Material[J]. Appl. Surf. Sci., 2015, 349: 988–996

    Article  Google Scholar 

  15. Kraines S, Akatsuka T, Crissman LW, et al. Pollution and Cost in the Coke-Making Supply Chain in Shanxi Province, China[J]. J. Ind. Ecol., 2002, 6(3-4): 161–184

    Article  Google Scholar 

  16. Yang SJ, He HP, Wu DQ, et al. Decolorization of Methylene Blue by Heterogeneous Fenton Reaction Using Fe3-xTixO4 (0 x 0. 78) at Neutral pH Values[J]. Appl. Catal. B-Environ., 2009, 89(3-4): 527–535

    Article  Google Scholar 

  17. Wang NN, Zhen T, Jiang JP, et al. Pilot-scale Treatment of p-Nitrophenol Wastewater by Microwave-enhanced Fenton Oxidation Process: Effects of System Parameters and Kinetics Study[J]. Chem. Eng. J., 2014, 239: 351–359

    Article  Google Scholar 

  18. Feng JY, Hu XJ, Yue PL. Discoloration and Mineralization of Orange II by Using a Bentonite Clay-based Fe Nanocomposite Film as a Heterogeneous Photo-Fenton Catalyst[J]. Water Res., 2005, 39(1): 89–96

    Article  Google Scholar 

  19. Paipa C, Mateo M, Godoy I, et al. Comparative Study of Alternative Methods for the Simultaneous Determination of Fe3+ and Fe2+ in Leaching Solutions and in Acid Mine Drainages[J]. Miner. Eng., 2005, 18(11): 1116–1119

    Article  Google Scholar 

  20. Zhang Z, Kong J. Novel Magnetic Fe3O4@C Nanoparticles as Adsorbents for Removal of Organic dyes from Aqueous Solution[J]. J. Hazard. Mater., 2011, 193: 325–329

    Article  Google Scholar 

  21. Ilgeun Oh, Myeong** Kim, Jooheon Kim. Deposition of Fe3O4 on Oxidized Activated Carbon by Hydrazine Reducing Method for High Performance Supercapacitor[J]. Microelectron. Reliab., 2014, 55: 114–122

    Google Scholar 

  22. Hu XB, Liu BZ, Deng YH, et al. Adsorption and Heterogeneous Fenton Degradation of 17a-methyltestosterone on Nano Fe3O4/MWCNTs in Aqueous Solution[J]. Appl. Catal. B-Environ., 2011, 107(3/4): 274–283

    Article  Google Scholar 

  23. Li Y, Leng T, Lin H, et al. Preparation of Fe3O4@ZrO2 Core-shell Microspheres as Affinity Probes for Selective Enrichment and Direct Determination of Phosphopeptides Using Matrix-assisted Laser Desorption Ionization Mass Spectrometry[J]. J. Proteome Res., 2007, 6: 4498–4510

    Article  Google Scholar 

  24. Zhang S, Niu H, Hu Z, et al. Preparation of Carbon Coated Fe3O4 Nanoparticles and Their Application for Solid-phase Extraction of Polycyclic Aromatic Hydrocarbons from Environmental Water Samples[J]. J. Chromatogr. A, 2010, 1217: 4757–4764

    Article  Google Scholar 

  25. Eklund PC, Holden JM, Jishi RA. Vibrational Modes of Carbon Nanotubes; Spectroscopy and Theory[J]. Carbon, 1995, 33: 959–972

    Article  Google Scholar 

  26. Brown TL, LeMay HE, Bursten BE, et al. Chemistry-The Central Science[M]. 11th ed., Pearson Education, London, 2009.

  27. Oliveira LCA, Riosa RVRA, Fabris JD, et al. Clay-iron Oxide Magnetic Compositesfor the Adsorption of Contaminants in Water[J]. Appl. Clay Sci., 2003, 22(4): 169–177

    Article  Google Scholar 

  28. Xu LL, Wang J, Zhang XH. Development of a Novel Integrated Membrane System Incorporated with an Activated Coke Adsorption unit for Advanced Coal Gasication Wastewater Treatment[J]. Colloid. Surface. A., 2015, 484: 99–107

    Article  Google Scholar 

  29. Sun SP, Lemley AT. p-Nitrophenol Degradation by a Heterogeneous Fenton-like Reaction on Nano-magnetite: Process Optimization, Kinetics, and Degradation Pathways[J]. J. Mol. Catal. A-Chem., 2011, 349: 71–79

    Article  Google Scholar 

  30. Zhou L, Zhou MH, Hu ZX, et al. Chemically Modified Graphite Felt as an Efficient Cathode in Electro-Fenton for p-nitrophenol Degradation[J]. Electrochimica Acta., 2014, 140: 376–383

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbing Li  (**文兵).

Additional information

Funded by the Specialized Research Fund for Doctoral Program of Higher Education of China (No. 20114219110002), the Educational Department of Hubei Province of China (No. D20131107) and the Natural Science Fundation of Hubei Provice (No. 2014CFB810)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Li, W., Wang, G. et al. Synthesis and characterization of biomimetic Fe3O4/coke magnetic nanoparticles composite material. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 31, 254–259 (2016). https://doi.org/10.1007/s11595-016-1361-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-016-1361-4

Keywords

Navigation