Log in

Preparation and characterization of natural rubber/silica nanocomposites using rule of similarity in latex

  • Organic material
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Rule of similarity and latex compounding techniques were combined for the first time to prepare natural rubber/nanosilica (NR/SiO2) nanocomposite with core-shell nanosilica-poly (methyl methacrylate) (SiO2-PMMA) particles and PMMA-modified natural rubber matrix (NR-PMMA). The microstructure of SiO2 and nanocomposites with different SiO2 contents was characterized by fourier transform infrared spectroscopy (FTIR); the morphology of nanocomposites was investigated with scanning electron microscopy (SEM); the tensile strength was characterized by tensile testing machine and the thermal stability of composites was studied by thermal gravimetric analysis. Results showed that PMMA chains have successfully grafted onto the surface of SiO2, and the core-shell SiO2-PMMA nanoparticles and NR-PMMA latex have been perfectly incorporated. SiO2-PMMA nanoparticles are evenly distributed over the NR matrix with an average size in the range of 60–100 nm at the low content (SiO2≤ 3 wt%), while aggregations are apparently observed when 5 wt% SiO2 is loaded. In addition, NR/SiO2 composities possess a considerable improvement in ageing resistance compared with the pure NR. The tensile strength of composite increases from 6.99 to 12.72 MPa, reaching the highest value at a 0.5 wt% SiO2 loading, and then the figure decreases gradually because of the aggregation of SiO2 nanoparticles. It is anticipated that the reported process is to provide a simple and economic way for preparing NR composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maznah KS, Baharin A, Hanafi I, et al. Effect of Soaking in Potassium Hydroxide Solution on the Curing, Tensile Properties and Extractable Protein Content of Natural Rubber Latex Films [J]. Polym. Test., 2008, 27(8): 1 013–1 016

    Google Scholar 

  2. Kato A, Kohjiya S, Ikeda Y. Nanostructure in Traditional Composites of Natural Rubber and Reinforcing Silica[J]. Rubber Chem Technol., 2007, 80(4):690–700

    Article  CAS  Google Scholar 

  3. Chaichua B, Prasassarakich P, Poompradub S. In Situ Silica Reinforcement of Natural Rubber by Sol-gel Process via Rubber Solution [J]. J. Sol-Gel Sci. Technol., 2009, 52(2):219–227

    Article  CAS  Google Scholar 

  4. Riaz U, Ahmad S, Ahmad SA, et al. Effect of Processing Conditions on the Characteristics of Nanostructured Composites of Poly(1-naphthylamine) [J]. Adv. Polym. Tech., 2008, 27(1):40–46

    Article  CAS  Google Scholar 

  5. Di Gianni A, Amerio E, Monticelli O, et al. Preparation of Polymer/clay Mineral Nanocomposites via Dispersion of Silylated Montmorillonite in a UV Curable Epoxy Matrix[J]. Appl. Clay Sci., 2008, 42(1–2):116–124

    Article  Google Scholar 

  6. Yao K, Wei Z, Dong AM, et al. A Novel Polymer Nanocomposite: Polystyrene-layered Methylbenzamidephenylsilica[J]. Macromolecules, 2009, 42(22): 9 190–9 194

    Article  CAS  Google Scholar 

  7. Sahu AK, Bhat SD, Pitchumani S, et al. Novel Organic-inorganic Composite Polymer-electrolyte Membranes for DMFCs [J]. J. Membrane Sci., 2009, 345(1–2):305–314

    Article  CAS  Google Scholar 

  8. De Sarkar M, Deb P. Synthesis and Characterization of Hybrid Nanocomposites Comprising Poly(vinyl alcohol) and Colloidal Silica [J]. Adv. Polym. Tech., 2008, 27(3):152–162

    Article  Google Scholar 

  9. Prasertsri S, Rattanasom N. Mechanical and Dam** Properties of Silica/natural Rubber Composites Prepared from Latex System[J]. Polymer Testing, 2011, 30(5):515–526

    Article  CAS  Google Scholar 

  10. Vinod VS, Varghese S, Kuriakose B. Degradation Behaviour of Natural Rubber-aluminium Powder Composites: Effect of Heat, Ozone and High Energy Radiation[J]. Polymer Degradation and Stability, 2002, 75(3):405–412

    Article  CAS  Google Scholar 

  11. Lee C-W, Hwang T, Nam G-Y, et al. A Novel Synthetic Route to Natural Rubber/Montmorillonite Nanocomposites Using Colloid Stabilization-destabilization Method [J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(11):1 826–1 832

    Article  Google Scholar 

  12. Carretero-González J, Valentín JL, Arroyo M, et al. Natural Rubber/clay Nanocomposites: Influence of Poly(ethylene glycol) on the Silicate Dispersion and Local Chain Order of Rubber Network[J]. European Polymer Journal, 2008, 44(11): 3 493–3 500

    Article  Google Scholar 

  13. Peng Z, Feng C, Luo Y, et al. Self-assembled Natural Rubber/multiwalled Carbon Nanotube Composites Using Latex Compounding Techniques [J]. Carbon, 2010, 48(15): 4 497–4 503

    Article  CAS  Google Scholar 

  14. Peng Z, Kong LX, Li SD, et al. Polyvinyl Alcohol/Silica Nanocomposite: Its Morphology and Thermal Degradation Kinetics[J]. J. Nanosci. Nanotech., 2006, 6(12): 3 934–3 938

    Article  CAS  Google Scholar 

  15. Li SD, Peng Z, Kong LX, et al. Thermal Degradation Kinetics and Morphology of Natural Rubber/Silica Nanocomposites[J]. J. Nanosci. Nanotech., 2006, 6:541–546

    Article  CAS  Google Scholar 

  16. Peng Z, Kong LX, Li SD, et al. Self-assembled Natural Rubber/Silica Nanocomposites: Its Preparation and Characterization [J]. Compos. Sci. Technol., 2007, 67(15–16): 3 130–3 139

    CAS  Google Scholar 

  17. Yorifuji D, Matsumura A, Aoki T, et al. Optical and Thermal Properties of Organo-silica/Polyimide Nano-hybrids Derived from Polysiloxazane Copolymers [J]. J. Photopolym. Sci. Technol., 2009, 22(4): 447–454

    Article  CAS  Google Scholar 

  18. Susteric Z, Kos T. Rheological Idiosyncrasies of Elastomer/Clay Nanocomposites [J]. Applied Rheology, 2008, 18(5): 1 430–1 439

    Google Scholar 

  19. Zhao YY, Qiu ZB, Yang WT. Effect of Functionalization of Multiwalled Nanotubes on the Crystallization and Hydrolytic Degradation of Biodegradable Poly(L-lactide) [J]. J. Phys. Chem. B, 2008, 112(51): 16 461–16 468

    Article  CAS  Google Scholar 

  20. Chinthamanipeta PS, Kobukata S, Nakata H, et al. Synthesis of Poly(methyl methacrylate)-silica Nanocomposites Using Methacrylatefunctionalized Silica Nanoparticles and RAFT Polymerization [J]. Polymer, 2008, 49(26): 5 636–5 642

    Article  CAS  Google Scholar 

  21. Katsikis N, Zahradnik F, Helmschrott A, et al. Thermal Stability of Poly(Methyl Methacrylate)/Silica nano- and Microcomposites as Investigated by Dynamic-mechanical Experiments[J]. Polym. Degrad. Stab., 2007, 92(11): 1 966–1 976

    Article  CAS  Google Scholar 

  22. Riello P, Munarin M, Silvestrini S, et al. X-ray Powder Diffraction Quantitative Analysis of an Amorphous SiO2-poly(Methyl Methacrylate) Nanocomposite[J]. J. Appl. Crystallogr., 2008, 41: 985–990

    Article  CAS  Google Scholar 

  23. Yeh JM, Huang KY, Dai CF, et al. Organic-acid-catalyzed Sol-gel Route for Preparing Poly(methyl methacrylate)-silica Hybrid Materials [J]. J. Appl. Polym. Sci., 2008, 110(4): 2 108–2 114

    Article  CAS  Google Scholar 

  24. Yan H, Tian G, Sun K, et al. Effect of Silane Coupling Agent on the Polymer-filler Interaction and Mechanical Properties of Silica-filled NR [J]. Polym. Phys., 2005, 43: 573–584

    Article  CAS  Google Scholar 

  25. Sombatsompop N, Wimolmala E, Markpin T. Fly-ash Particles and Precipitated Silica as Fillers in Rubbers. II. Effects of Silica Content and Si69-treatment in Natural Rubber/Styrene-butadiene Rubber Vulcanizates [J]. J. Appl. Polym. Sci., 2007, 104(5): 3 396–3 405

    Article  CAS  Google Scholar 

  26. Ostad-Movahed S, Yasin KA, Ansarifar A, et al. Comparing Effects of Silanized Silica Nanofiller on the Crosslinking and Mechanical Properties of Natural Rubber and Synthetic Polyisoprene [J]. J. Appl. Polym. Sci., 2008, 109(2): 869–881

    Article  CAS  Google Scholar 

  27. Xu P, Wang HT, Tong R, et al. Preparation and Morphology of SiO2/PMMA Nanohybrids by Microemulsion Polymerization [J]. Colloid Polym. Sci., 2006, 284(7): 755–762

    Article  CAS  Google Scholar 

  28. Hong RY, Fu HP, Zhang YJ, et al. Surface-modified Silica Nanoparticles for Reinforcement of PMMA [J]. J. Appl. Polym. Sci., 2007, 105(4): 2 176–2 184

    CAS  Google Scholar 

  29. Kashiwagi T, Morgan AB, Antonucci JM, et al. Thermal and Flammability Properties of a Silica-poly(methylmethacrylate) Nanocomposite [J]. J. Appl. Polym. Sci., 2003, 89: 2 072–2 078

    Article  CAS  Google Scholar 

  30. Bokobza L, Chauvin JP. Reinforcement of Natural Rubber: Use of in Situ Generated Silicas and Nanofibres of Sepiolite [J]. Polymer, 2005, 46(12): 4 144–4 151

    Article  CAS  Google Scholar 

  31. Magaraphan R, Thaijaroen W, Lim-Ochakun R. Structure and Properties of Natural Rubber and Modified Montmorillonite Nanocomposites[J]. Rubber Chem. Technol., 2003, 76: 406–418

    Article  CAS  Google Scholar 

  32. Varghese S, Karger-Kocsis J. Natural Rubber-based Nanocomposites by Latex Compounding with Layered Silicates [J]. Polymer, 2003, 44: 4 921–4 927

    CAS  Google Scholar 

  33. Saito R, Tobe T. Electrical Properties of Poly(2-vinyl pyridine)/Silica Nanocomposites Prepared with Perhydropolysilazane [J]. Polym. Adv. Technol., 2005, 16(2-3): 232–238

    Article  CAS  Google Scholar 

  34. Shen L, Zhong W, Wang H, et al. Preparation and Characterization of SMA(SAN)/Silica Hybrids Derived from Water Glass [J]. J. Appl. Polym. Sci., 2004, 93: 2 289–2 296

    Article  CAS  Google Scholar 

  35. Tanahashi M, Hirose M, Watanabe Y, et al. Silica/Perfluoropolymer Nanocomposites Fabricated by Direct Melt-compounding: A Novel Method without Surface Modification on Nano-silica [J]. J. Nanosci. Nanotech., 2007, 7(7): 2 433–2 442

    Article  CAS  Google Scholar 

  36. Chen JJ, Zhu CF, Deng HT, et al. Preparation and Characterization of the Waterborne Polyurethane Modified with Nanosilica [J]. J. Polym. Res., 2009, 16(4): 375–380

    Article  Google Scholar 

  37. Yu HP, Li SD, Zhong JP, et al. Studies of Thermooxidative Degradation Process of Chlorinated Natural Rubber from Latex[J]. Thermochim. Acta, 2004, 410: 119–124

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Peng  (彭政).

Additional information

Funded by the National Natural Science Foundation of China (No. 50763006), Ministry of Science and Technology R & D Research Institutes (No.2008EG134285), 973 Program Special Fund (No. 2010CB635109), and the Fundamental Research Funds for Rubber Research Institute, CATAS (No.1630022012013)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Y., Feng, C., Wang, Q. et al. Preparation and characterization of natural rubber/silica nanocomposites using rule of similarity in latex. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 28, 997–1002 (2013). https://doi.org/10.1007/s11595-013-0807-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-013-0807-1

Key words

Navigation