Log in

Validation of scenario generation for decision-making using machine learning prediction models

A case study for crop yield

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

Machine learning provides valuable information for data-driven decision-making. However, real-world problems commonly include uncertainties and the features needed to generate the prediction outputs are random variables. Even the most reliable machine learning models may not be helpful for decision-makers when the decisions must be taken before the values of features used in machine learning models are realized. To support decision-making under uncertainty, we propose a scenario generation procedure for stochastic programs that incorporates the uncertainties in both prediction features and the machine learning model prediction error. A statistical test is implemented to assess the reliability of the scenario sets by comparison with corresponding historical observations. We test the whole procedure in a case study for crop yield in Midwest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data can be made available on request.

References

  1. Abdelbaky, I., Tayara, H., Chong, K.T.: Prediction of kinase inhibitors binding modes with machine learning and reduced descriptor sets. Sci. Rep. 11(1), 1–13 (2021)

    Article  Google Scholar 

  2. Aimin, H.: Uncertainty, risk aversion and risk management in agriculture. Agric. Agric. Sci. Procedia 1, 152–156 (2010)

    Google Scholar 

  3. Archontoulis, S.V., Castellano, M.J., Licht, M.A., Nichols, V., Baum, M., Huber, I., Martinez-Feria, R., Puntel, L., Ordóñez, R.A., Iqbal, J., et al.: Predicting crop yields and soil-plant nitrogen dynamics in the US Corn Belt. Crop Sci. 60(2), 721–738 (2020)

    Article  Google Scholar 

  4. Ay, D.S., Ryan, S.M.: Observational data-based quality assessment of scenario generation for stochastic programs. Comput. Manag. Sci. 16(3), 521–540 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  6. Chlingaryan, A., Sukkarieh, S., Whelan, B.: Machines learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 151, 61–69 (2018). https://doi.org/10.1016/j.compag.2018.05.012

    Article  Google Scholar 

  7. Emirhüseyinoğlu, G., Ryan, S.M.: Farm management optimization under uncertainty with impacts on water quality and economic risk. IISE Trans. 54(12), 1143–1160 (2022)

    Article  Google Scholar 

  8. Gada, M., Haria, Z., Mankad, A., Damania, K., Sankhe, S.: Automated feature engineering and hyperparameter optimization for machine learning. In: 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), vol. 1, pp. 981–986. IEEE (2021)

  9. Gneiting, T., Balabdaoui, F., Raftery, A.E.: Probabilistic forecasts, calibration and sharpness. J. R. Stat. Soc. Ser. B 69(2), 243–268 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Haigh, T., Takle, E., Andresen, J., Widhalm, M., Carlton, J.S., Angel, J.: Map** the decision points and climate information use of agricultural producers across the US Corn Belt. Clim. Risk Manag. 7, 20–30 (2015)

    Article  Google Scholar 

  11. Hamsa, K., Bellundagi, V.: Review on decision-making under risk and uncertainty in agriculture. Econ. Aff. 62(3), 447–453 (2017)

    Article  Google Scholar 

  12. Høyland, K., Wallace, S.W.: Generating scenario trees for multistage decision problems. Manag. Sci. 47(2), 295–307 (2001)

    Article  MATH  Google Scholar 

  13. van Klompenburg, T., Kassahun, A., Catal, C.: Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 177, 105709 (2020)

    Article  Google Scholar 

  14. Li, Y., Guan, K., Schnitkey, G.D., DeLucia, E., Peng, B.: Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Glob. Change Biol. 25(7), 2325–2337 (2019)

    Article  Google Scholar 

  15. Pflug, G.C.: Scenario tree generation for multiperiod financial optimization by optimal discretization. Math. Program. 89(2), 251–271 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sarı, D., Lee, Y., Ryan, S., Woodruff, D.: Statistical metrics for assessing the quality of wind power scenarios for stochastic unit commitment. Wind Energy 19(5), 873–893 (2016)

    Article  Google Scholar 

  17. Sarı, D., Ryan, S.M.: Package MTDrh. https://cran.r-project.org/package=MTDrh (2016). https://doi.org/10.1002/we.1872

  18. Shahhosseini, M., Hu, G., Archontoulis, S.: Forecasting corn yield with machine learning ensembles. Front. Plant Sci. 11, 1120 (2020)

    Article  Google Scholar 

  19. Shahhosseini, M., Hu, G., Huber, I., Archontoulis, S.V.: Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt. Sci. Rep. 11(1), 1–15 (2021)

    Article  Google Scholar 

  20. Strobl, C., Boulesteix, A.L., Zeileis, A., Hothorn, T.: Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinform. 8(1), 1–21 (2007)

    Article  Google Scholar 

  21. Thornton, M., Shrestha, R., Wei, Y., Thornton, P., Kao, S., Wilson, B.: Daymet: Daily surface weather data on a 1-km grid for North America, version 4. https://doi.org/10.3334/ORNLDAAC/1840 (2020)

  22. Traverso, A., Kazmierski, M., Zhovannik, I., Welch, M., Wee, L., Jaffray, D., Dekker, A., Hope, A.: Machine learning helps identifying volume-confounding effects in radiomics. Phys. Med. 71, 24–30 (2020)

    Article  Google Scholar 

  23. USDA, National Agricultural Statistics Service: Survey statistics. https://quickstats.nass.usda.gov/ (2021). Accessed: 2021-07-01

  24. Xu, H., Twine, T.E., Girvetz, E.: Climate change and maize yield in Iowa. PLOS One 11(5), e0156083 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grants 1828942, 1929681, and 1842097, project 1011702 from the USDA National Institute of Food and Agriculture, The Foundation for Food and Agriculture Research, and Plant Sciences Institute at Iowa State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Görkem Emirhüseyinoğlu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emirhüseyinoğlu, G., Shahhosseini, M., Hu, G. et al. Validation of scenario generation for decision-making using machine learning prediction models. Optim Lett (2023). https://doi.org/10.1007/s11590-023-02023-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11590-023-02023-7

Keywords

Navigation