Log in

Determination of fluoroquinolone antibiotics in water based on Cu(BDC-NH2)/acetylene black sensor

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This study focuses on the determination of new contaminant fluoroquinolone antibiotics. Using ciprofloxacin (CIP) as a research representative, a novel electrochemical sensor for the detection of CIP was prepared by combining the material Cu(BDC-NH2) with the acetylene black (ACET) with good electrical conductivity. Cu(BDC-NH2) was synthesized by rapid conversion of (Zn, Cu) hydroxy nitrate (HDS) at room temperature rather than high temperature reported in literature. The optimal preparation and detection conditions were investigated, the materials and sensors were characterized using XRD, SEM, FTIR, and XPS, and the electrochemical behavior of the sensors was characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results showed that the Cu(BDC-NH2)/AECT/Nafion sensor exhibited a good linear relationship with the peak currents between CIP concentrations of 2.4 × 10–7 ~ 1.2 × 10–5 mol/L, with the detection limit of 6.2 × 10–8 mol/L, the sensitivity of 8.69 A L/mol, and the spiked recoveries of 93.5 to 105.4%. The method has potential application in the determination of fluoroquinolone antibiotics (e.g., CIP) in environmental waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References 

  1. Gissawong N, Srijaranai S, Boonchiangma S, Uppachai P et al (2021) An electrochemical sensor for voltammetric detection of ciprofloxacin using a glassy carbon electrode modified with activated carbon, gold nanoparticles and supramolecular solvent. Mikrochim Acta 188:208. https://doi.org/10.1007/s00604-021-04869-z

    Article  CAS  PubMed  Google Scholar 

  2. Bhatt S. Chatterjee S (2022) Fluoroquinolone antibiotics: occurrence, mode of action, resistance, environmental detection, and remediation – a comprehensive review. Environmental Pollution 315. https://doi.org/10.1016/j.envpol.2022.120440

  3. Fang X, Chen X, Liu Y, Li Q et al (2019) Nanocomposites of Zr(IV)-based metal–organic frameworks and reduced graphene oxide for electrochemically sensing ciprofloxacin in water. ACS Applied Nano Materials 2:2367–2376. https://doi.org/10.1021/acsanm.9b00243

    Article  CAS  Google Scholar 

  4. Basir Ahmad SP, Rizwan HK (2006) Effect of albumin conformation on the binding of ciprofloxacin to human serum albumin: a novel approach directly assigning binding site. Biomacromol 7:1350–1356

    Article  Google Scholar 

  5. Silva LRG, Rodrigues JGA, de Vasconcellos LSM, Ribeiro ES et al (2022) Portable and simple electroanalytical procedure for simultaneous detection of dipyrone and norfloxacin with disposable commercial electrodes in water and organic fertilizers. Ionics 28:4833–4841. https://doi.org/10.1007/s11581-022-04689-y

    Article  CAS  Google Scholar 

  6. Liu J, Wang B, Huang H, Jian D et al (2021) Quantitative ciprofloxacin on-site rapid detections using quantum dot microsphere based immunochromatographic test strips. Food Chemistry 335. https://doi.org/10.1016/j.foodchem.2020.127596

  7. Cinková K, Andrejčáková D, Švorc Ľ (2016) Electrochemical method for point-of-care determination of ciprofloxacin using boron-doped diamond electrode. Acta Chimica Slovaca 9:146–151. https://doi.org/10.1515/acs-2016-0025

    Article  CAS  Google Scholar 

  8. Adane W D, Chandravanshi B S. Tessema M (2023) A simple ultrasensitive and cost-effective electrochemical sensor for the determination of ciprofloxacin in various types of samples. Sensing and Bio-Sensing Research 39. https://doi.org/10.1016/j.sbsr.2022.100547

  9. Kergaravat SV, Gagneten AM, Hernandez SR (2018) Development of an electrochemical method for the detection of quinolones: application to cladoceran ecotoxicity studies. Microchemical Journal 141:279–286. https://doi.org/10.1016/j.microc.2018.05.039

    Article  CAS  Google Scholar 

  10. Maia AS, Paíga P, Delerue-Matos C, Castro P M L et al (2020) Quantification of fluoroquinolones in wastewaters by liquid chromatography-tandem mass spectrometry. Environmental Pollution 259. https://doi.org/10.1016/j.envpol.2020.113927

  11. Wang L, Wu X, **e Z (2005) Determination of enrofloxacin and its metabolite ciprofloxacin by high performance capillary electrophoresis with end-column amperometric detection. J Sep Sci 28:1143–1148. https://doi.org/10.1002/jssc.200400110

    Article  CAS  PubMed  Google Scholar 

  12. Pascual-Reguera MI, Pérez Parras G, Molina Dı́az A (2004) A single spectroscopic flow-through sensing device for determination of ciprofloxacin. J Pharm Biomed Analys 35:689–695. https://doi.org/10.1016/j.jpba.2004.03.002

    Article  CAS  Google Scholar 

  13. Pei Y, Zeng L, Wen C, Wu K et al (2021) Detection of enrofloxacin by flow injection chemiluminescence immunoassay based on cobalt hydroxide nanozyme. Microchimica Acta 188. https://doi.org/10.1007/s00604-021-04846-6

  14. Shan J, Liu Y, Li R, Wu C et al (2015) Indirect electrochemical determination of ciprofloxacin by anodic strip** voltammetry of cd(ii) on graphene-modified electrode. J Electroanal Chem 738:123–129. https://doi.org/10.1016/j.jelechem.2014.11.031

    Article  CAS  Google Scholar 

  15. Rudnicki K, Sipa K, Brycht M, Borgul P et al (2020) Electrochemical sensing of fluoroquinolone antibiotics. TrAC Trends in Analytical Chemistry 128. https://doi.org/10.1016/j.trac.2020.115907

  16. Jalal NR, Madrakian T, Afkhami A, Ghamsari M (2019) Polyethylenimine@Fe3O4@carbon nanotubes nanocomposite as a modifier in glassy carbon electrode for sensitive determination of ciprofloxacin in biological samples. J Electroanal Chem 833:281–289. https://doi.org/10.1016/j.jelechem.2018.12.004

    Article  CAS  Google Scholar 

  17. Yin C L, Wang G K. Zhang R X (2023) Nanoparticle/RGO modified ciprofloxacin hydrochloride molecularly imprinted electrochemical sensor. Journal of Henan Normal University: Natural Science Edition 51: 89–96. https://kns.cnki.net/kcms/detail//41.1109.N.20230109.1546.011.html

  18. Spokoyny A M, Kim D, Sumrein A. Mirkin C A (2009) Infinite coordination polymer nano- and microparticle structures. Chemical Society Reviews 38. https://doi.org/10.1039/b807085g

  19. Yin M, Zhang L, Wei X, Sun J et al (2022) Detection of antibiotics by electrochemical sensors based on metal-organic frameworks and their derived materials. Microchemical Journal 183. https://doi.org/10.1016/j.microc.2022.107946

  20. Varsha M V. Nageswaran G (2023) Ruthenium doped Cu-MOF as an efficient sensing platform for the voltammetric detection of ciprofloxacin. Microchemical Journal 188. https://doi.org/10.1016/j.microc.2023.108481

  21. Chen J, Shu H, Niu P, Chen P et al (2021) Highly sensitive detection of trace tetracycline in water using a metal-organic framework-enabled sensor. Adsorpt Sci Technol 2021:1–11. https://doi.org/10.1155/2021/1462107

    Article  CAS  Google Scholar 

  22. Rani R, Deep A, Mizaikoff B. Singh S (2022) Zirconium metal organic framework based opto-electrochemical sensor for nitrofurazone detection. Journal of Electroanalytical Chemistry 909.https://doi.org/10.1016/j.jelechem.2022.116124

  23. Duan Y (2023) Determination of ethyl malt phenol in one drop of incense by WO3/acetylene black modified electrode 45: 116–121

  24. Zhang L, Sun M, **g T, Li S et al (2022) A facile electrochemical sensor based on green synthesis of cs/ce-mof for detection of tryptophan in human serum. Colloids and Surfaces A: Physicochemical and Engineering Aspects 648. https://doi.org/10.1016/j.colsurfa.2022.129225

  25. Zhao J, Nunn WT, Lemaire PC, Lin Y et al (2015) Facile conversion of hydroxy double salts to metal–organic frameworks using metal oxide particles and atomic layer deposition thin-film templates. J Am Chem Soc 137:13756–13759. https://doi.org/10.1021/jacs.5b08752

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Y, Cai X, Lang X, Qiao X et al (2012) Insights into aquatic toxicities of the antibiotics oxytetracycline and ciprofloxacin in the presence of metal: complexation versus mixture. Environ Pollut 166:48–56. https://doi.org/10.1016/j.envpol.2012.03.009

    Article  CAS  PubMed  Google Scholar 

  27. Azriouil M, Matrouf M, Ettadili F E, Laghrib F et al (2022) Recent trends on electrochemical determination of antibiotic ciprofloxacin in biological fluids, pharmaceutical formulations, environmental resources and foodstuffs: direct and indirect approaches. Food and Chemical Toxicology 168. https://doi.org/10.1016/j.fct.2022.113378

  28. Wang Y, Feng W, Li J. You Z (2023) A novel route for the facile synthesis of NH2-MIL-53(Fe) and its highly efficient and selective adsorption of congo red. Inorganica Chimica Acta 547. https://doi.org/10.1016/j.ica.2022.121332

  29. Rezki M, Septiani NLW, Iqbal M, Harimurti S et al (2021) Amine-functionalized cu-mof nanospheres towards label-free hepatitis b surface antigen electrochemical immunosensors. Journal of Materials Chemistry B 9:5711–5721. https://doi.org/10.1039/d1tb00222h

    Article  CAS  PubMed  Google Scholar 

  30. Gupta NK, Kim S (2021) Fabrication of Cu(BDC)0.5(BDC-NH2)0.5 metal-organic framework for superior H2S removal at room temperature. Chem Eng J 411128536:128536. https://doi.org/10.1016/j.cej.2021.128536

    Article  CAS  Google Scholar 

  31. Cai P X, Chen J M, Gu W F (1993) Infrared absorption peaks of Cu-O stretching vibrations in YBa2Cu3O7-δ. Low Temp Phys Lett 10:1–5

  32. Berber MR, Hafez IH (2024) Boosting the proton conductivity, chemical stability, and fuel cell performance of nafion membrane at high operating temperatures and low humidity levels by incorporating phytic acid. Int J Hydrogen Energ 57:1126–1138. https://doi.org/10.1016/j.ijhydene.2024.01.079

    Article  CAS  Google Scholar 

  33. Pushpanjali P A, Manjunatha J G, Hareesha N, Souza E S D et al (2021) Voltammetric analysis of antihistamine drug cetirizine and paracetamol at poly(l-leucine) layered carbon nanotube paste electrode. Surfaces and Interfaces 24. https://doi.org/10.1016/j.surfin.2021.101154

  34. Tigari G, Manjunatha JG (2020) Optimized voltammetric experiment for the determination of phloroglucinol at surfactant modified carbon nanotube paste electrode. Insts Exp Tech 63:750–757. https://doi.org/10.1134/s0020441220050139

    Article  CAS  Google Scholar 

  35. Manjunatha JG, Kumara Swamy BE (2010) Electrochemical studies of dopamine and epinephrine at a poly (tannic acid) modified carbon paste electrode: a cyclic voltammetric study. Int J Electrochem Sci 5:1236–1245

    Article  CAS  Google Scholar 

  36. Laviron E (1979) Genral expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  37. Surya SG, Khatoon S, Ait Lahcen A, Nguyen ATH et al (2020) A chitosan gold nanoparticles molecularly imprinted polymer based ciprofloxacin sensor. RSC Adv 10:12823–12832. https://doi.org/10.1039/d0ra01838d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pollap A, Baran K, Kuszewska N. Kochana J (2020) Electrochemical sensing of ciprofloxacin and paracetamol in environmental water using titanium sol based sensor. J Electroanalyt Chem 878. https://doi.org/10.1016/j.jelechem.2020.114574

  39. Ipte PR, Kumar S, Satpati AK (2019) Electrochemical synthesis of carbon nano spheres and its application for detection of ciprofloxacin. J Environ Sci Health Part A 55:142–150

    Article  Google Scholar 

  40. Zhang S, Yu S, Wang X, Zhang Y et al (2023) An electrochemical sensor based on mno2/zno composites for the detection of ciprofloxacin in honey. Microchemical Journal 194. https://doi.org/10.1016/j.microc.2023.109355

  41. Tajeu KY, Ebunang DVT, Tonleu RCT, Jiokeng SLZ et al (2020) Electroanalytical application of thiol-grafted laponite to the sensitive quantification of ciprofloxacin antibiotic. J Appl Electrochem 51:435–446. https://doi.org/10.1007/s10800-020-01508-y

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All persons who have made substantial contributions to the work reported in the manuscript are acknowledged very much! J. Q.: conceptualization, methodology, investigation, formal analysis, writing—original draft, data curation. Y. Z.: conceptualization, methodology. W. L. G.: formal analysis. W. C.: conceptualization, resources, supervision, writing—review and editing. All the authors reviewed the manuscript.

Corresponding author

Correspondence to Wen Chen.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, J., Zhou, Y., Gou, W. et al. Determination of fluoroquinolone antibiotics in water based on Cu(BDC-NH2)/acetylene black sensor. Ionics (2024). https://doi.org/10.1007/s11581-024-05508-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11581-024-05508-2

Keywords

Navigation