Log in

Multi-component layer–protected Si-based composites with improved electrochemical performances as anode for Li-ion batteries

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this paper, Si-based composites coated by a multi-component layer have been synthetically prepared, via a solvothermal process, mechanical ball milling, and subsequent high-temperature calcination. The multi-component surface layer consists of an amorphous SiOx/C layer with well dispersion of TiC and TiB2 nanocrystals and amorphous TiOx and B2O3. The introduction of titanium and boron species is beneficial for the improvement of mechanical stability of the coating layer and ensures the structural integrity of the electrode during cycling, consequently leading to excellent electrochemical performances. Therefore, the obtained Si-based composites exhibit much better high-rate performances and cycling stability than Si and Si/C electrodes. Si-based composites from 2.94 mmol tetrabutyl titanate deliver specific capacities of 1377, 1361, 1247, 1104, 949, 833, 669, and 526 mAh·g−1 at 0.1, 0.2, 0.5, 1.0, 2.0, 3.0, 5.0, and 8.0 A·g−1, respectively, and capacity retention of 76.7% after 500 cycles at 1 A·g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available from the corresponding author upon reasonable request.

References

  1. Wang J, He T, Li P, Meng L, Ding Y, Tian H, Bai H, Lou X, Zhang H (2023) An in situ thermal cross-linking binder for silicon-based lithium ion battery. J Colloid Interface Sci 649:795–803

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Man Q, An Y, Liu C, Shen H, **ong S, Feng J (2023) Interfacial design of silicon/carbon anodes for rechargeable batteries: a review. J Energy Chem 76:576–600

    Article  CAS  Google Scholar 

  3. Shao R, Zhu F, Cao Z, Zhang Z, Dou M, Niu J, Zhu B, Wang F (2020) Heteroatom-doped carbon networks enabling robust and flexible silicon anodes for high energy Li-ion batteries. J Mater Chem A 8:18338–18347

    Article  CAS  Google Scholar 

  4. Li Y, Zhang L, Yen H-Y, Zhou Y, Jang G, Yuan S, Wang J-H, **ong P, Liu M, Park HS, Li W (2023) Single-phase ternary compounds with a disordered lattice and liquid metal phase for high-performance Li-ion battery anodes. Nano-Micro Lett 15:63

    Article  ADS  Google Scholar 

  5. Ashuri M, He Q, Shaw LL (2023) Silicon oxides for Li-ion battery anode applications: toward long-term cycling stability. J Power Sources 559:232660

    Article  CAS  Google Scholar 

  6. Ashuri M, He Q, Liu Y, Shaw LL (2020) Investigation towards scalable processing of silicon/graphite nanocomposite anodes with good cycle stability and specific capacity. Nano Mater Sci 2:297–308

    Article  Google Scholar 

  7. Ryu J, Choi S, Bok T, Park S (2015) Nanotubular structured Si-based multicomponent anodes for high-performance lithium-ion batteries with controllable pore size via coaxial electro-spinning. Nanoscale 7:6126–6135

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Tian K, Song Z, Zhou Q, Guan C, Lu M, Zhang M, Wei D, Li X (2023) Silicon-carbon anode with high interfacial stability by a facile thermal reaction involving alkaline nitrogenous carbon source for lithium ion batteries. J Energy Storage 72:108401

    Article  Google Scholar 

  9. Li Q, Yi R, Xu Y, Cao X, Wang C, Xu W, Zhang J-G (2022) Failure analysis and design principles of silicon-based lithium-ion batteries using micron-sized porous silicon/carbon composite. J Power Sources 548:232063

    Article  CAS  Google Scholar 

  10. Xu Q, Sun J-K, Li J-Y, Yin Y-X, Guo Y-G (2018) Scalable synthesis of spherical Si/C granules with 3D conducting networks as ultrahigh loading anodes in lithium-ion batteries. Energy Storage Mater 12:54–60

    Article  Google Scholar 

  11. Hu J, Wang Q, Fu L, Rajagopalan R, Cui Y, Chen H, Yuan H, Tang Y, Wang H (2020) Titanium monoxide-stabilized silicon nanoparticles with a litchi-like structure as an advanced anode for Li-ion batteries. ACS Appl Mater Interfaces 12:48467–48475

    Article  CAS  PubMed  Google Scholar 

  12. Huang X, Pu H, Chang J, Cui S, Hallac PB, Jiang J, Hurley PT, Chen J (2013) Improved cyclic performance of si anodes for lithium-ion batteries by forming intermetallic interphases between Si nanoparticles and metal microparticles. ACS Appl Mater Interfaces 5:11965–11970

    Article  CAS  PubMed  Google Scholar 

  13. Im J, Kwon J-D, Kim D-H, Yoon S, Cho KY (2022) P-Doped SiOx/Si/SiOx Sandwich anode for Li-ion batteries to achieve high initial coulombic efficiency and Low Capacity Decay. Small Methods 6:2101052

    Article  CAS  Google Scholar 

  14. Suh S, Yoon H, Park H, Kim J, Kim H-J (2021) Enhancing the electrochemical performance of silicon anodes for lithium-ion batteries: one-pot solid-state synthesis of Si/Cu/Cu3Si/C electrode. Appl Surf Sci 567:150868

    Article  CAS  Google Scholar 

  15. Chen M, **g Q-S, Sun H-B, Xu J-Q, Yuan Z-Y, Ren J-T, Ding A-X, Huang Z-Y, Dong M-Y (2019) Engineering the core–shell-structured NCNTs-Ni2Si@porous Si composite with robust Ni–Si interfacial bonding for high-performance Li-ion batteries. Langmuir 35:6321–6332

    Article  CAS  PubMed  Google Scholar 

  16. Mei S, Guo S, **ang B, Deng J, Fu J, Zhang X, Zheng Y, Gao B, Chu PK, Huo K (2022) Enhanced ion conductivity and electrode-electrolyte interphase stability of porous Si anodes enabled by silicon nitride nanocoating for high-performance Li-ion batteries. J Energy Chem 69:616–625

    Article  CAS  Google Scholar 

  17. Qu X, Zhang X, Gao Y, Hu J, Gao M, Pan H, Liu Y (2019) Remarkably improved cycling stability of boron-strengthened multicomponent layer protected micron-Si composite anode. ACS Sustainable Chem Eng 7:19167–19175

    Article  CAS  Google Scholar 

  18. Yang Y, Qu X, Zhang L, Gao M, Liu Y, Pan H (2018) Reaction-ball-milling-driven surface coating strategy to suppress pulverization of microparticle Si anodes. ACS Appl Mater Interfaces 10:20591–20598

    Article  CAS  PubMed  Google Scholar 

  19. Huang W, Zhao S, Wang J, **an X (2022) Contribution of TiN to the enhanced cycling stability of Si@TiN/C composites as anode materials for Li-ion batteries. J Electroanal Chem 906:116010

    Article  CAS  Google Scholar 

  20. Zhao S, Zhang M, Wang Z, **an X (2018) Enhanced high-rate performance of Li4Ti5O12 microspheresi multiwalled carbon nanotubes composites prepared by electrostatic self-assembly. Electrochim Acta 276:73–80

    Article  CAS  Google Scholar 

  21. Huang W, Zhao S, Wang J, **an X (2022) Fabrication of Si/TiC-SiC/C composites as high-performance anode materials for Li-ion batteries. J Phys Chem Solids 171:111019

    Article  CAS  Google Scholar 

  22. Fang D, Wang C, Lv C, Lv Y, Huang G, Yang J, Pan S (2022) XPS studies of surface oxidation of metal carbides. Fuller Nanotub Car N 30:718–726

    Article  CAS  Google Scholar 

  23. Huang B, Chen S, Yao Z, Zhang M, **g Y, Li B, **ong W (2015) Study of carbothermal synthesis of TiB2 assisted by extended high-energy milling. Powder Technol 275:69–76

    Article  CAS  Google Scholar 

  24. Desrues A, De Vito E, Boismain F, Alper JP, Haon C, Herlin-Boime N, Franger S (2022) Electrochemical and X-ray photoelectron spectroscopic study of early SEI formation and evolution on Si and Si@C nanoparticle-based electrodes. Materials 15:7990

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Qiu X-L, Gao X-H, Zhou T-H, Chen B-H, Lu J-Z, Guo H-X, Li X-T, Liu G (2019) Structure, thermal stability and chromaticity investigation of TiB2 based high temperature solar selective absorbing coatings. Sol Energy 181:88–94

    Article  CAS  ADS  Google Scholar 

  26. Wang L, **e G, Mi X, Zhang B, Du Y, Zhu Q, Yu Z (2023) Surface-modified TiO2@SiO2 nanocomposites for enhanced dispersibility and optical performance to apply in the printing process as a pigment. ACS Omega 8:20116–20124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou A, Wang W, Liu Q, Wang Y, Yao X, Qing F, Li E, Yang T, Zhang L, Li J (2017) Stable, fast and high-energy-density LiCoO2 cathode at high operation voltage enabled by glassy B2O3 modification. J Power Sources 362:131–139

    Article  CAS  Google Scholar 

  28. Ma J, Quan B, Liu W, Liang X, Zhang Y, Li D, Cheng Y, Ji G (2017) Application of unit polarization strategy to achieve high-performance electromagnetic absorption by designing ternary SiO2@TiO2-C composite. J Alloys Compd 709:796–801

    Article  CAS  Google Scholar 

  29. Wu Z, Lv W, Cheng X, Gao J, Qian Z, Tian D, Li J, He W, Yang C (2019) A nanostructured Si/SiOC composite anode with volume-change-buffering microstructure for lithium-ion batteries. Chem-Eur J 25:2604–2609

    Article  CAS  PubMed  Google Scholar 

  30. Dawei L, **lu Y, Yanan P, **anfeng Q, Yuanyu T (2023) Facile coating of micron/submicron Si with N-doped porous carbons to yield Si/C composites with good long-cycle stability. J Alloys Compd 965:171375

    Article  Google Scholar 

  31. He Z, Liu L, Liu S, Chen Y, Sun L, Liu C, Zhu Y, Wang X (2023) A novel design idea of high-stability silicon anodes for lithium-ion batteries: building in-situ “high-speed channels” while reserving space. Chem Eng J 472:144991

    Article  CAS  Google Scholar 

  32. Liu Q, Pang C, Chen W, Rao Z, Lu H, Xue L, Zhang W (2019) Double coating of micron-sized silicon by TiN@NC for high-performance anode in lithium-ion batteries. Energy Technol-Ger 7:1900487

    Article  Google Scholar 

  33. Xu Z-L, Zhang B, Kim J-K (2014) Electrospun carbon nanofiber anodes containing monodispersed Si nanoparticles and graphene oxide with exceptional high rate capacities. Nano Energy 6:27–35

    Article  Google Scholar 

  34. Tie X, Han Q, Liang C, Li B, Zai J, Qian X (2018) Si@SiOx/graphene nanosheets composite: ball milling synthesis and enhanced lithium storage performance. Front Mater 4:47

    Article  ADS  Google Scholar 

  35. Zhang Q, Zhang C, Luo W, Cui L, Wang Y-J, Jian T, Li X, Yan Q, Liu H, Ouyang C, Chen Y, Chen C-L, Zhang J (2020) Sequence-defined peptoids with -OH and -COOH groups As binders to reduce cracks of Si nanoparticles of lithium-ion batteries. Adv Sci 7:2000749

    Article  CAS  Google Scholar 

  36. Sreejith OV, Indu MS, Alexander GV, Ramaswamy M (2021) Electrochemical characteristics of Ge incorporated Li4Ti5O12 as an anode for Li-ion battery applications. Mater Today Commun 27:102273

    Article  Google Scholar 

Download references

Funding

This work was supported by General projects of Chongqing Natural Science Foundation (nos. cstc2021jcyj-msxmX0777; cstc2020jcyj-msxmX0136) and the Fundamental Research Funds for the Central Universities (no. 2021CDJQY-048).

Author information

Authors and Affiliations

Authors

Contributions

ZL: investigation, formal analysis; SZ: methodology, validation, data curation, writing—reviewing and editing; JW: resources, investigation; XX: supervision, conceptualization; all authors reviewed the manuscript.

Corresponding authors

Correspondence to Shuo Zhao or **aochao **an.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2405 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhao, S., Wang, J. et al. Multi-component layer–protected Si-based composites with improved electrochemical performances as anode for Li-ion batteries. Ionics 30, 1319–1327 (2024). https://doi.org/10.1007/s11581-024-05374-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05374-y

Keywords

Navigation