Log in

N and non-N site grafting piperidinium group to chitosan for anion exchange membrane

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this study, two kinds of novel anion exchange membranes based on chitosan backbone are obtained. N-4-Methylpiperidinechitosan (NMPCS) and quaternized N-[(2-hydroxyl-3-piperidine)propyl]chitosan (QNHPPCS) are synthesized by the reaction of chitosan with 1-methyl-4-piperidone and 2,3-epoxypropylpiperidineammonium chloride, respectively, and the piperidinium groups of NMPCS and QNHPPCS are grafted to chitosan backbone by non-N and N site, respectively. 1H NMR and FT-IR tests prove that 1-methyl-4-piperidone and 2,3-epoxypropylpiperidineammonium chloride successfully react with chitosan. 3-Glycidoxypropyltrimethoxysilane (KH560) is used for cross-linking, after cross-linking, the tensile strength of cross-linked quaternized N-4-methylpiperidinechitosan (CQNMPCS) and cross-linked quaternized N-[(2-hydroxyl-3-piperidine)propyl]chitosan (CQNHPPCS) can both reach 8 MPa, and the membranes are not excessive swelling in water. The ion exchange capacity (IEC) of CQNMPCS and CQNHPPCS can reach up to 2.28 mmol·g−1 and 1.36 mmol·g−1, respectively. XRD and DSC tests evaluate aggregate structure change of chitosan modification; the graft modification destroys the semi-crystalline structure of chitosan and results in low mechanical strength. The ion conductivity of CQNMPCS and CQNHPPCS can reach up to 30.6 mS·cm−1 and 25.5 mS·cm−1, respectively. After being immersed in 8 mol·L−1 KOH solution, the ion conductivity retention of CQNMPCS and CQNHPPCS can both reach 90%, and the CQNMPCS is more alkaline resistant. These results indicate that the prepared chitosan-based anion exchange membranes are promising materials for fuel cell application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Scheme 4
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Sharaf OZ, Orhan MF (2014) An overview of fuel cell technology: fundamentals and applications. Renew Sustain Energy Rev 32:810–853. https://doi.org/10.1016/j.rser.2014.01.012

    Article  CAS  Google Scholar 

  2. Jiang S, Sun H, Wang H et al (2021) A comprehensive review on the synthesis and applications of ion exchange membranes. Chemosphere 282:130817. https://doi.org/10.1016/j.chemosphere.2021.130817

    Article  CAS  PubMed  Google Scholar 

  3. Wang Y, Chen KS, Mishler J et al (2011) A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energy 88:981–1007. https://doi.org/10.1016/j.apenergy.2010.09.030

    Article  CAS  Google Scholar 

  4. Li Z, Chen J, Zhou J et al (2021) Trimethyl-ammonium alkaline anion exchange membranes with the vinylbenzyl chloride/acrylonitrile main chain. Macromol Res 29:494–504. https://doi.org/10.1007/s13233-021-9054-z

    Article  CAS  Google Scholar 

  5. Arunkumar I, Kim AR, Lee SH, Yoo DJ (2022) Enhanced fumion nanocomposite membranes embedded with graphene oxide as a promising anion exchange membrane for fuel cell application. Int J Hydrogen Energy S0360319922049345. https://doi.org/10.1016/j.ijhydene.2022.10.184

  6. Lee KH, Chu JY, Kim AR, Yoo DJ (2021) Fabrication of high-alkaline stable quaternized poly(arylene ether ketone)/graphene oxide derivative including Zwitterion for alkaline fuel cells

    Book  Google Scholar 

  7. Kim SH, Lee KH, Chu JY et al (2020) Enhanced hydroxide conductivity and dimensional stability with blended membranes containing hyperbranched PAES/linear PPO as anion exchange membranes. Polymers 12:3011. https://doi.org/10.3390/polym12123011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee KH, Chu JY, Kim AR et al (2021) Functionalized TiO2 mediated organic-inorganic composite membranes based on quaternized poly(arylene ether ketone) with enhanced ionic conductivity and alkaline stability for alkaline fuel cells. J Membr Sci 634:119435. https://doi.org/10.1016/j.memsci.2021.119435

    Article  CAS  Google Scholar 

  9. Oh BH, Kim AR, Yoo DJ (2019) Profile of extended chemical stability and mechanical integrity and high hydroxide ion conductivity of poly(ether imide) based membranes for anion exchange membrane fuel cells. Int J Hydrogen Energy 44:4281–4292. https://doi.org/10.1016/j.ijhydene.2018.12.177

    Article  CAS  Google Scholar 

  10. Chu JY, Lee KH, Kim AR, Yoo DJ (2019) Study on the chemical stabilities of poly(arylene ether) random copolymers for alkaline fuel cells: effect of main chain structures with different monomer units. ACS Sustain Chem Eng 7:20077–20087. https://doi.org/10.1021/acssuschemeng.9b05934

    Article  CAS  Google Scholar 

  11. Wang Y-J, Qiao J, Baker R, Zhang J (2013) Alkaline polymer electrolyte membranes for fuel cell applications. Chem Soc Rev 42:5768. https://doi.org/10.1039/c3cs60053j

    Article  CAS  PubMed  Google Scholar 

  12. You W, Noonan KJT, Coates GW (2020) Alkaline-stable anion exchange membranes: a review of synthetic approaches. Progress Polym Sci 100:101177. https://doi.org/10.1016/j.progpolymsci.2019.101177

    Article  CAS  Google Scholar 

  13. Merle G, Wessling M, Nijmeijer K (2011) Anion exchange membranes for alkaline fuel cells: a review. J Membr Sci 377:1–35. https://doi.org/10.1016/j.memsci.2011.04.043

    Article  CAS  Google Scholar 

  14. Vijayakumar V (2019) Recent advancements in applications of alkaline anion exchange membranes for polymer electrolyte fuel cells. J Ind Eng Chem 70:70–86. https://doi.org/10.1016/j.jiec.2018.10.026

    Article  CAS  Google Scholar 

  15. Shaari N, Kamarudin SK (2015) Chitosan and alginate types of bio-membrane in fuel cell application: an overview. J Power Sources 289:71–80. https://doi.org/10.1016/j.jpowsour.2015.04.027

    Article  CAS  Google Scholar 

  16. Rosli NAH, Loh KS, Wong WY et al (2020) Review of chitosan-based polymers as proton exchange membranes and roles of chitosan-supported ionic liquids. IJMS 21:632. https://doi.org/10.3390/ijms21020632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hren M, Božič M, Fakin D et al (2021) Alkaline membrane fuel cells: anion exchange membranes and fuels. Sustain Energy Fuels 5:604–637. https://doi.org/10.1039/D0SE01373K

    Article  CAS  Google Scholar 

  18. Muhmed SA, Nor NAM, Jaafar J et al (2020) Emerging chitosan and cellulose green materials for ion exchange membrane fuel cell: a review. Energ Ecol Environ 5:85–107. https://doi.org/10.1007/s40974-019-00127-4

    Article  Google Scholar 

  19. Ma J, Sahai Y (2013) Chitosan biopolymer for fuel cell applications. Carbohyd Polym 92:955–975. https://doi.org/10.1016/j.carbpol.2012.10.015

    Article  CAS  Google Scholar 

  20. Wu M, Zhang X, Zhao Y et al (2022) A high-performance hydroxide exchange membrane enabled by Cu2+-crosslinked chitosan. Nat Nanotechnol 17:629–636. https://doi.org/10.1038/s41565-022-01112-5

    Article  CAS  PubMed  Google Scholar 

  21. Liu G, Tsen W-C, Hu F et al (2020) Enhanced proton conductivities of chitosan-based membranes by inorganic solid superacid SO42−–TiO2 coated carbon nanotubes. Int J Hydrogen Energy 45:29212–29221. https://doi.org/10.1016/j.ijhydene.2020.07.157

    Article  CAS  Google Scholar 

  22. Shi B, Zhang J, Wu W et al (2019) Controlling conduction environments of anion exchange membrane by functionalized SiO2 for enhanced hydroxide conductivity. J Membr Sci 569:166–176. https://doi.org/10.1016/j.memsci.2018.10.020

    Article  CAS  Google Scholar 

  23. Wang J, Wang L (2014) Preparation and properties of organic–inorganic alkaline hybrid membranes for direct methanol fuel cell application. Solid State Ionics 255:96–103. https://doi.org/10.1016/j.ssi.2013.12.013

    Article  CAS  Google Scholar 

  24. Jang S-C, Tsen W-C, Chuang F-S, Gong C (2019) Simultaneously enhanced hydroxide conductivity and mechanical properties of quaternized chitosan/functionalized carbon nanotubes composite anion exchange membranes. Int J Hydrogen Energy 44:18134–18144. https://doi.org/10.1016/j.ijhydene.2019.05.102

    Article  CAS  Google Scholar 

  25. **ong Y, Liu QL, Zhang QG, Zhu AM (2008) Synthesis and characterization of cross-linked quaternized poly(vinyl alcohol)/chitosan composite anion exchange membranes for fuel cells. J Power Sources 183:447–453. https://doi.org/10.1016/j.jpowsour.2008.06.004

    Article  CAS  Google Scholar 

  26. Liao G-M, Yang C-C, Hu C-C et al (2015) Novel quaternized polyvinyl alcohol/quaternized chitosan nano-composite as an effective hydroxide-conducting electrolyte. J Membr Sci 485:17–29. https://doi.org/10.1016/j.memsci.2015.02.043

    Article  CAS  Google Scholar 

  27. Yuan Y, Shen C, Chen J, Ren X (2018) Synthesis and characterization of cross-linked quaternized chitosan/poly(diallyldimethylammonium chloride) blend anion-exchange membranes. Ionics 24:1173–1180. https://doi.org/10.1007/s11581-017-2280-x

    Article  CAS  Google Scholar 

  28. Khaing MM (2017) Chitosan-modified poly (2,6-dimethyl-1,4-phenylene oxide) for anion-exchange membrane in fuel cell technology. Polymer-Plastics Technol Eng 57(11):1121–1130. https://doi.org/10.1080/03602559.2017.1373396

    Article  CAS  Google Scholar 

  29. Ao B, Wei Y, Wang M et al (2018) High performing all-solid electrochemical capacitor using chitosan/poly(acrylamide-co-diallyldimethylammonium chloride) as anion conducting membranes. Electrochim Acta 276:319–324. https://doi.org/10.1016/j.electacta.2018.04.133

    Article  CAS  Google Scholar 

  30. Nhung LTT, Kim IY, Yoon YS (2020) Quaternized chitosan-based anion exchange membrane composited with quaternized poly(vinylbenzyl chloride)/polysulfone blend. Polymers 12:2714. https://doi.org/10.3390/polym12112714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vaghari H, Jafarizadeh-Malmiri H, Berenjian A, Anarjan N (2013) Recent advances in application of chitosan in fuel cells. Sustain Chem Process 1:16. https://doi.org/10.1186/2043-7129-1-16

    Article  CAS  Google Scholar 

  32. Wan Y, Peppley B, Creber KAM, Bui VT (2010) Anion-exchange membranes composed of quaternized-chitosan derivatives for alkaline fuel cells. J Power Sources 195:3785–3793. https://doi.org/10.1016/j.jpowsour.2009.11.123

    Article  CAS  Google Scholar 

  33. Han X, Zheng X, Song S et al (2019) Schiff base functionalized chitosan anion exchange membranes with 1,4-dichlorobutane as the crosslinker. J Mol Struct 1195:807–814. https://doi.org/10.1016/j.molstruc.2019.06.031

    Article  CAS  Google Scholar 

  34. Ryu J, Seo JY, Choi BN et al (2019) Quaternized chitosan-based anion exchange membrane for alkaline direct methanol fuel cells. J Ind Eng Chem 73:254–259. https://doi.org/10.1016/j.jiec.2019.01.033

    Article  CAS  Google Scholar 

  35. Marino MG, Kreuer KD (2015) Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids. Chemsuschem 8:513–523. https://doi.org/10.1002/cssc.201403022

    Article  CAS  PubMed  Google Scholar 

  36. Hugar KM, You W, Coates GW (2019) Protocol for the quantitative assessment of organic cation stability for polymer electrolytes. ACS Energy Lett 4:1681–1686. https://doi.org/10.1021/acsenergylett.9b00908

    Article  CAS  Google Scholar 

  37. Salma U, Nagao Y (2020) Alkaline stability of ether bond free fluorene-based anion exchange polymer containing cycloaliphatic quaternary ammonium groups. Polymer Degrad Stab 179:109299. https://doi.org/10.1016/j.polymdegradstab.2020.109299

    Article  CAS  Google Scholar 

  38. Yang K, Li X, Guo J et al (2020) Preparation and properties of anion exchange membranes with exceptional alkaline stable polymer backbone and cation groups. J Mem Sci 596:117720. https://doi.org/10.1016/j.memsci.2019.117720

    Article  CAS  Google Scholar 

  39. Zhang M, Zhang L, Wu Z et al (2021) Multi-cation side-chain-type containing piperidinium group poly(2,6-dimethyl-1,4-phenylene oxide) alkaline anion exchange membranes. J Appl Polym Sci 138:50736. https://doi.org/10.1002/app.50736

    Article  CAS  Google Scholar 

  40. Yun D, Yim T, Kwon OJ, Kim T-H (2019) Click chemistry-induced terminally crosslinked poly(ether sulfone) as a highly conductive anion exchange membrane under humidity condition. Macromol Res 27:1050–1059. https://doi.org/10.1007/s13233-020-8037-9

    Article  CAS  Google Scholar 

  41. Chen J, Zhang M, Shen C, Gao S (2022) Preparation and characterization of non-N-bonded side-chain anion exchange membranes based on poly(2,6-dimethyl-1,4-phenylene oxide). Ind Eng Chem Res 61:1715–1724. https://doi.org/10.1021/acs.iecr.1c04171

    Article  CAS  Google Scholar 

  42. Pham TH, Allushi A, Olsson JS, Jannasch P (2020) Rational molecular design of anion exchange membranes functionalized with alicyclic quaternary ammonium cations. Polym Chem 11:6953–6963. https://doi.org/10.1039/D0PY01291B

    Article  CAS  Google Scholar 

  43. Ren X, Shen C, Gao S et al (2018) Proton exchange membrane with enlarged operating temperature by incorporating phosphonic acid functionalized and crosslinked siloxane in sulfonated poly(ether ether ketone) (SPEEK) matrix. Macromol Res 26:173–181. https://doi.org/10.1007/s13233-018-6015-2

    Article  CAS  Google Scholar 

  44. Wu Z, Shen C, Gao S et al (2021) Crosslinked proton exchange membranes with a wider working temperature based on phosphonic acid functionalized siloxane and PPO. Macromol Res 29:199–210. https://doi.org/10.1007/s13233-021-9024-5

    Article  CAS  Google Scholar 

  45. Liu X, Yang F, Song T et al (2011) Synthesis of carboxymethylated and quaternized chitosans and their therapeutic effect on nonalcoholic fatty liver disease. J Agric Food Chem 59:10683–10692. https://doi.org/10.1021/jf2020683

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Natural Science Foundation of China (Grant No. 21875176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhui Shen.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Chen, J., Gao, S. et al. N and non-N site grafting piperidinium group to chitosan for anion exchange membrane. Ionics 29, 1831–1845 (2023). https://doi.org/10.1007/s11581-023-04971-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-04971-7

Keywords

Navigation