Log in

Industrial tests of composite porous Pb-Ag anode in zinc electrowinning plant

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, the frame structure composite porous Pb-Ag (0.8wt.%) anode with the size of 975 mm × 620 mm × 6 mm was fabricated by the semi-integral foaming process of counter-gravity infiltration and was endured a 16-day industrial test in zinc electrowinning plant in comparison to the traditional flat plate anode with the same size and alloy metals. The results show that, compared with flat plat anode, the composite porous anode can save the DC, reduce the anodic corrosion rate by 71% and then enhance the quality of zinc product, and inhibit the depletion of Mn2+ in electrolyte and then decrease the formation of anode slime by about 51.8%. Furthermore, the apparent porosity of composite porous anode was about 38%, which means an obvious reduction of capital cost for the electrowinning process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Petrova M, Stefanov Y, Noncheva Z, Dobrev T, Rashkov S (1999) Electrochemical behaviour of lead alloys as anodes in zinc electrowinning. Br Corros J 34(3):198–200. https://doi.org/10.1179/000705999101500842

    Article  CAS  Google Scholar 

  2. Yang HT, Liu HR, Zhang YC, Chen BM, Guo ZC, Xu RD (2013) Properties of a new type Al/Pb-0.3%Ag alloy composite anode for zinc electrowinning. Int J Miner, Metall Mater 20(10):986. https://doi.org/10.1007/s12613-013-0825-1

    Article  CAS  Google Scholar 

  3. Tomar A, Mittal R, Singh D (2014) Strength and elongation of spray formed Al-Si-Pb alloys. Int J Miner, Metall Mater 21(12):1222. https://doi.org/10.1007/s12613-014-1030-6

    Article  CAS  Google Scholar 

  4. Stefanov Y, Dobrev T (2005) Develo** and studying the properties of Pb–TiO2 alloy coated lead composite anodes for zinc electrowinning. Trans IMF 83(6):291–295. https://doi.org/10.1179/174591905X79184

    Article  CAS  Google Scholar 

  5. Ivanov I, Stefanov Y, Noncheva Z, Petrova M, Dobrev T, Mirkova L, Vermeersch R, Demaerel J (2000) Insoluble anodes used in hydrometallurgy: Part I Corrosion resistance of lead and lead alloy anodes. Hydrometallurgy 57(2):109–124. https://doi.org/10.1016/S0304-386X(00)00097-9

    Article  CAS  Google Scholar 

  6. Rashkov S, Dobrev T, Noncheva Z, Stefanov Y, Rashkova B, Petrova M (1999) Lead–cobalt anodes for electrowinning of zinc from sulphate electrolytes. Hydrometallurgy 52(3):223–230. https://doi.org/10.1016/S0304-386X(99)00005-5

    Article  CAS  Google Scholar 

  7. Wang BJ, Mu LL, Guo S, Bi YF (2019) Lead leaching mechanism and kinetics in electrolytic manganese anode slime. Hydrometallurgy 183:98–105. https://doi.org/10.1016/j.hydromet.2018.11.015

    Article  CAS  Google Scholar 

  8. Zhong XC, Yu XY, Liu ZW, Jiang LX, Li J, Liu YX (2015) Comparison of corrosion and oxygen evolution behaviors between cast and rolled Pb–Ag–Nd anodes. Int J Miner, Metall Mater 22(10):1067. https://doi.org/10.1007/s12613-015-1169-9

    Article  CAS  Google Scholar 

  9. Li BS, An L, Gan FX (2006) Preparation and electrocatalytic properties of Ti/IrO2-Ta2O5 anodes for oxygen evolution. Trans Nonferrous Met Soc China 16(5):1193–1199. https://doi.org/10.1016/S1003-6326(06)60400-7

    Article  CAS  Google Scholar 

  10. Hu JM, Zhang JQ, Cao CN (2004) Oxygen evolution reaction on IrO2-based DSA® type electrodes: kinetics analysis of Tafel lines and EIS. Int J Hydrogen Energy 29(8):791–797. https://doi.org/10.1016/j.ijhydene.2003.09.007

    Article  CAS  Google Scholar 

  11. Stefanov Y, Dobrev T (2005) Potentiodynamic and electronmicroscopy investigations of lead–cobalt alloy coated lead composite anodes for zinc electrowinning. Trans IMF 83(6):296–299. https://doi.org/10.1179/174591905X79193

    Article  CAS  Google Scholar 

  12. Li Y, Jiang LX, Lv XJ, Lai YQ, Zhang HL, Li J, Liu Y (2011) Oxygen evolution and corrosion behaviors of co-deposited Pb/Pb-MnO2 composite anode for electrowinning of nonferrous metals. Hydrometallurgy 109(3–4):252–257. https://doi.org/10.1016/j.hydromet.2011.08.001

    Article  CAS  Google Scholar 

  13. Royaei N, Shahrabi T, Yaghoubinezhad Y, Technology, (2018) The investigation of the electrocatalytic and corrosion behavior of a TiO2–RuO2 anode modified by graphene oxide and reduced graphene oxide nanosheets via a sol–gel method. Catal Sci Technol 8(19):4957–4974. https://doi.org/10.1039/C8CY01353E

    Article  CAS  Google Scholar 

  14. Felder A, Prengaman RD (2006) Lead alloys for permanent anodes in the nonferrous metals industry. JOM 58(10):28–31. https://doi.org/10.1007/s11837-006-0197-3

    Article  CAS  Google Scholar 

  15. Lai YQ, Jiang LX, Li J, Zhong SP, Lü XJ, Peng HJ, Liu YX (2010) A novel porous Pb–Ag anode for energy-saving in zinc electrowinning: Part II: Preparation and pilot plant tests of large size anode. Hydrometallurgy 102(1–4):81–86. https://doi.org/10.1016/j.hydromet.2010.02.011

    Article  CAS  Google Scholar 

  16. Lai YQ, Jiang LX, Li J, Zhong SP, Lü XJ, Peng HJ, Liu YX (2010) A novel porous Pb–Ag anode for energy-saving in zinc electro-winning: Part I: Laboratory preparation and properties. Hydrometallurgy 102(1–4):73–80. https://doi.org/10.1016/j.hydromet.2010.02.012

    Article  CAS  Google Scholar 

  17. Jiang LX, Lv XJ, Li Y (2011) Anti-sandwich structure lead-based composite porous anode for zinc electrowinning. J Cent South Univ 42(4):871–875. https://doi.org/10.3866/PKU.WHXB20100935

    Article  CAS  Google Scholar 

  18. Huo DW, Yang J, Zhou XY, Wang H, Zhang TK (2012) Preparation of open-celled aluminum foams by counter-gravity infiltration casting. Trans Nonferrous Met Soc China 22(1):85–89. https://doi.org/10.1016/S1003-6326(11)61144-8

    Article  CAS  Google Scholar 

  19. Peng RQ, Ren HJ, Zhang XP (2003) Metallurgy of lead and zinc. Science Press, Bei**g

    Google Scholar 

  20. Jiang LX, Zhong SP, Lai YQ, Lü**ao XJ, Hong B, Peng HJ, Zhou XY, Li J, Liu Y (2010) Effect of current densities on the electrochemical behavior of a flat plate Pb-Ag anode for zinc electrowinning. Acta Phys-Chim Sin 26(9):2369–2374. https://doi.org/10.3866/PKU.WHXB20100935

    Article  CAS  Google Scholar 

  21. Yu P, O’Keefe TJ (2002) Evaluation of lead anode reactions in acid sulfate electrolytes: II. Manganese reactions J Electrochem Soc 149(5):A558–A569. https://doi.org/10.1149/1.1464882

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangxing Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Chen, J. & Jiang, L. Industrial tests of composite porous Pb-Ag anode in zinc electrowinning plant. Ionics 29, 377–385 (2023). https://doi.org/10.1007/s11581-022-04812-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04812-z

Keywords

Navigation