Log in

A mini-review of metal sulfur batteries

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Metal sulfur batteries have become a promising candidate for next-generation rechargeable batteries because of their high theoretical energy density and low cost. However, the issues of sulfur cathodes and metal anodes limited their advantages in electrochemical energy storage. Herein, we summarize various metal sulfur batteries based on their principles, properties, and electrochemical behaviors of sulfurs. The bottlenecks and challenges on the basis of sulfur cathodes and metal anodes are analyzed. In particular, metal anode strategies, electrolyte strategies, and various advanced sulfur cathode strategies are proposed. Moreover, the perspectives on the sulfur hosts of high porosity and electrocatalytic phases are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 5

Similar content being viewed by others

References

  1. Yu X, Manthiram A (2020) A progress report on metal–sulfur batteries. Adv Funct Mater 30:2004084

    Article  CAS  Google Scholar 

  2. Liu YT, Liu S, Li GR, Gao XP (2021) Strategy of enhancing the volumetric energy density for lithium-sulfur batteries. Adv Mater 33:e2003955

    Article  PubMed  CAS  Google Scholar 

  3. Eng AYS, Kumar V, Zhang Y, Luo J, Wang W, Sun Y, Li W, Seh ZW (2021) Room-temperature sodium–sulfur batteries and beyond: realizing practical high energy systems through anode, cathode, and electrolyte engineering. Adv Energy Mater 11:2003493

    Article  CAS  Google Scholar 

  4. Nguyen RHD, Eng AYS, Song S, Seh ZW (2021) Material design strategies to improve the performance of rechargeable magnesium-sulfur batteries. Mater Horiz 8:830–853

    Article  CAS  PubMed  Google Scholar 

  5. JT. **ang **ao, Zheng Huang and Shuqiang Jiao, (2021) A cobalt-based metal-organic framework and its derived material as sulfur hosts for aluminum-sulfur batteries with the chemical anchoring effect, Phys. Chem. Chem. Phys. 10326.

  6. Marco Bonechi MI, Vanossi Davide, Fontanesi Claudio (2021) The fundamental and underrated role of the base electrolyte in the polymerization mechanism. The resorcinol case study. J. Phys. Chem. A 125:34–42

    Article  PubMed  CAS  Google Scholar 

  7. Yue Yang HY, Wang **nran, Bai Ying, Chuan Wu (2022) Multivalent metal-sulfur batteries for green and cost-effective energy storage: current status and challenges. J. Energy Chem. 64:144–165

    Article  Google Scholar 

  8. Cui M, Fei J, Mo F, Lei H, Huang Y (2021) Ultra-high-capacity and dendrite-free zinc-sulfur conversion batteries based on a low-cost deep eutectic solvent. ACS Appl Mater Interfaces 13:54981–54989

    Article  CAS  PubMed  Google Scholar 

  9. Zhao H, ** H, Shen L, Li Z (2020) Virtual special issue of recent research advances in China: chemical loo**. Energy Fuels 35:3–6

    Article  CAS  Google Scholar 

  10. Ye H, Li Y (2022) Room-temperature metal–sulfur batteries: what can we learn from lithium–sulfur? InfoMat 4:e12291

    Article  CAS  Google Scholar 

  11. Li H-J, ** K, Wang W, Liu S, Li G-R, Gao X-P (2022) Quantitatively regulating defects of 2D tungsten selenide to enhance catalytic ability for polysulfide conversion in a lithium sulfur battery. Energy Storage Mater 45:1229–1237

    Article  Google Scholar 

  12. Brownlee C (2021) Peering inside tumor vasculature to evaluate antiangiogenic drugs. ACS Nano 15:3–6

    Article  Google Scholar 

  13. Yang H, Li H, Li J, Sun Z, He K, Cheng HM, Li F (2019) The rechargeable aluminum battery: opportunities and challenges. Angew Chem 58:11978–11996

    Article  CAS  Google Scholar 

  14. Ye G, Zhao M, Hou L-P, Chen W-J, Zhang X-Q, Li B-Q, Huang J-Q (2022) Evaluation on a 400 Wh kg−1 lithium–sulfur pouch cell. J Energy Chem 66:24–29

    Article  Google Scholar 

  15. Zhang S, Yao Y, Yu Y (2021) Frontiers for room-temperature sodium–sulfur batteries. ACS Energy Lett 6:529–536

    Article  CAS  Google Scholar 

  16. Bieker G, Küpers V, Kolek M, Winter M (2021) Intrinsic differences and realistic perspectives of lithium-sulfur and magnesium-sulfur batteries. Commun Mater 2:37

    Article  CAS  Google Scholar 

  17. Tao Gao XL, Wang X, Junkai H, Han F, Fan X, Suo L, Pearse AJ, Lee SB, Rubloff GW, Gaskell KJ, Noked M, Wang C (2016) A rechargeable Al/S battery with an ionic-liquid electrolyte. Angew. Chem. Int. Ed. 128:1–5

    Google Scholar 

  18. Wang L, Bao J, Liu Q, Sun C-F (2019) Concentrated electrolytes unlock the full energy potential of potassium-sulfur battery chemistry. Energy Storage Mater 18:470–475

    Article  Google Scholar 

  19. Scafuri A, Berthelot R, Pirnat K, Vizintin A, Bitenc J, Aquilanti G, Foix D, Dedryvère R, Arčon I, Dominko R, Stievano L (2020) Spectroscopic Insights into the electrochemical mechanism of rechargeable calcium/sulfur batteries. Chem Mater 32:8266–8275

    Article  CAS  Google Scholar 

  20. Luo LW, Zhang C, Wu X, Han C, Xu Y, Ji X, Jiang JX (2021) A Zn-S aqueous primary battery with high energy and flat discharge plateau. Chem Commun 57:9918–9921

    Article  CAS  Google Scholar 

  21. Li G, Wang S, Zhang Y, Li M, Chen Z, Lu J (2018) Revisiting the role of polysulfides in lithium-sulfur batteries. Adv Mater 30:e1705590

    Article  PubMed  CAS  Google Scholar 

  22. Carter R, Oakes L, Douglas A, Muralidharan N, Cohn AP, Pint CL (2017) A sugar-derived room-temperature sodium sulfur battery with long term cycling stability. Nano Lett 17:1863–1869

    Article  CAS  PubMed  Google Scholar 

  23. Xu Y, Ye Y, Zhao S, Feng J, Li J, Chen H, Yang A, Shi F, Jia L, Wu Y, Yu X, Glans-Suzuki PA, Cui Y, Guo J, Zhang Y (2019) In situ X-ray absorption spectroscopic investigation of the capacity degradation mechanism in Mg/S batteries. Nano Lett 19:2928–2934

    Article  CAS  PubMed  Google Scholar 

  24. Bian Y, Li Y, Yu Z, Chen H, Du K, Qiu C, Zhang G, Lv Z, Lin M-C (2018) Using an AlCl3/urea ionic liquid analog electrolyte for improving the lifetime of aluminum-sulfur batteries. ChemElectroChem 5:3607–3611

    Article  CAS  Google Scholar 

  25. Zhang H, Shang Z, Luo G, Jiao S, Cao R, Chen Q, Lu K (2022) Redox catalysis promoted activation of sulfur redox chemistry for energy-dense flexible solid-state Zn-S battery. ACS Nano 16:7344–7351

    Article  CAS  Google Scholar 

  26. Li J, Dai L, Wang Z, Wang H, **e L, Chen J, Yan C, Yuan H, Wang H, Chen C (2022) Cellulose nanofiber separator for suppressing shuttle effect and Li dendrite formation in lithium-sulfur batteries. J Energy Chem 67:736–744

    Article  Google Scholar 

  27. Dai YY, Xu CM, Liu XH, He XX, Yang Z, Lai WH, Li L, Qiao Y, Chou SL (2021) Manipulating metal–sulfur interactions for achieving high-performance S cathodes for room temperature Li/Na–sulfur batteries, Carbon. Energy 3:253–270

    CAS  Google Scholar 

  28. Yan R, Ma T, Cheng M, Tao X, Yang Z, Ran F, Li S, Yin B, Cheng C, Yang W (2021) Metal-organic-framework-derived nanostructures as multifaceted electrodes in metal-sulfur batteries. Adv Mater 33:e2008784

    Article  PubMed  CAS  Google Scholar 

  29. Wang WP, Zhang J, Chou J, Yin YX, You Y, **n S, Guo YG (2020) Solidifying cathode–electrolyte interface for lithium–sulfur batteries. Adv Energy Mater 11:2000791

    Article  CAS  Google Scholar 

  30. Niu L, Wu T, Zhou D, Qi J, **-mediated dynamic interactive sites boost sulfur chemistry for flexible lithium-sulfur batteries. Energy Storage Mater 45:840–850

    Article  Google Scholar 

  31. Zou Q, Lu YC (2021) Liquid electrolyte design for metal-sulfur batteries: mechanistic understanding and perspective. EcoMat 3:e12115

    Article  CAS  Google Scholar 

  32. Li-PengHou NY, **e J, Shi P, Sun S-Y, ** C-B, Chen C-M, Liu Q-B, Li B-Q, Zhang X-Q, Zhang Q (2022) Modification of nitrate ion enables stable solid electrolyte interphase in lithium metal batteries. Angew. Chem. Int. Ed. 61:e202201406

    Google Scholar 

  33. Li Y, Gao T, Ni D, Zhou Y, Yousaf M, Guo Z, Zhou J, Zhou P, Wang Q, Guo S (2022) Two birds with one stone: interfacial engineering of multifunctional Janus separator for lithium-sulfur batteries. Adv Mater 34:e2107638

    Article  PubMed  CAS  Google Scholar 

  34. Tong X, Zhang F, Ji B, Sheng M, Tang Y (2016) Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-ion batteries. Adv Mater 28:9979–9985

    Article  CAS  PubMed  Google Scholar 

  35. Tong X, Zhang F, Chen G, Liu X, Gu L, Tang Y (2018) Core-shell aluminum@carbon nanospheres for dual-ion batteries with excellent cycling performance under high rates. Adv Energy Mater 8:1701967

    Article  CAS  Google Scholar 

  36. Shim J, Lee JW, Bae KY, Kim HJ, Yoon WY, Lee JC (2017) Dendrite suppression by synergistic combination of solid polymer electrolyte crosslinked with natural terpenes and lithium-powder anode for lithium-metal batteries. Chemsuschem 10:2274–2283

    Article  CAS  PubMed  Google Scholar 

  37. Xu X, Hui KS, Hui KN, Shen J, Zhou G, Liu J, Sun Y (2021) Engineering strategies for low-cost and high-power density aluminum-ion batteries. Chem Engineering J 418:129385

    Article  CAS  Google Scholar 

  38. Xu X, Hui KS, Dinh DA, Hui KN, Wang H (2019) Recent advances in hybrid sodium–air batteries. Mater Horiz 6:1306–1335

    Article  CAS  Google Scholar 

  39. Wu S, Su B, Sun M, Gu S, Lu Z, Zhang K, Yu DYW, Huang B, Wang P, Lee CS, Zhang W (2021) Dilute aqueous-aprotic hybrid electrolyte enabling a wide electrochemical window through solvation structure engineering. Adv Mater 33:e2102390

    Article  PubMed  CAS  Google Scholar 

  40. Wang L, Wang Z-Y, Wu J-F, Li G-R, Liu S, Gao X-P (2020) To effectively drive the conversion of sulfur with electroactive niobium tungsten oxide microspheres for lithium−sulfur battery. Nano Energy 77:105173

    Article  CAS  Google Scholar 

  41. **ao F, Wang H, Yao T, Zhao X, Yang X, Yu DYW, Rogach AL (2021) MOF-derived CoS2/N-doped carbon composite to induce short-chain sulfur molecule generation for enhanced sodium-sulfur battery performance. ACS Appl Mater Interfaces 13:18010–18020

    Article  CAS  PubMed  Google Scholar 

  42. Wang L, Jankowski P, Njel C, Bauer W, Li Z, Meng Z, Dasari B, Vegge T, Lastra JMG, Zhao-Karger Z, Fichtner M (2022) Dual role of Mo6S8 in polysulfide conversion and shuttle for Mg-S batteries. Adv Sci 9:e2104605

    Article  CAS  Google Scholar 

  43. Jiang W, Bian Y, Zhang Y, Lin M (2021) A new strategy to improve the performance of aluminum-sulfur battery. IOP Conference Series: Earth and Environmental Science 692:032070

    Google Scholar 

  44. Chiu LL, Chung SH (2021) A Poly(ethylene oxide)/lithium bis(trifluoromethanesulfonyl)imide-coated polypropylene membrane for a high-loading lithium-sulfur battery. Polymers 13:535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang S, Yao Y, Jiao X, Ma M, Huang H, Zhou X, Wang L, Bai J, Yu Y (2021) Mo2 N-W2N heterostructures embedded in spherical carbon superstructure as highly efficient polysulfide electrocatalysts for stable room-temperature Na-S batteries. Adv Mater 33:e2103846

    Article  PubMed  CAS  Google Scholar 

  46. Jiahui Zhou YY, Zhang Y, Duan S, Zhou X, Sun W, Shengming X (2021) Sulfur in amorphous silica for an advanced room-temperature sodium-sulfur battery. Angew. Chem. Int. Ed. 26:10129–10136

    Article  CAS  Google Scholar 

  47. Aslam MK, Hussain T, Tabassum H, Wei Z, Tang W, Li S, Bao S-J, Zhao XS, Xu M (2022) Sulfur encapsulation into yolk-shell Fe2N@nitrogen doped carbon for ambient-temperature sodium-sulfur battery cathode. Chem Engineering J 429:132389

    Article  CAS  Google Scholar 

  48. Zhou X, Tian J, Hu J, Li C (2018) High rate magnesium-sulfur battery with improved cyclability based on metal-organic framework derivative carbon host. Adv Mater 30:1704166

    Article  CAS  Google Scholar 

  49. Huang D, Tan S, Li M, Wang D, Han C, An Q, Mai L (2020) Highly efficient non-nucleophilic Mg(CF3SO3)2-based electrolyte for high-power Mg/S battery. ACS Appl Mater Interfaces 12:17474–17480

    Article  CAS  PubMed  Google Scholar 

  50. Fan H, Zheng Z, Zhao L, Li W, Wang J, Dai M, Zhao Y, **ao J, Wang G, Ding X, **ao H, Li J, Wu Y, Zhang Y (2019) Extending cycle life of Mg/S battery by activation of mg anode/electrolyte interface through an LiCl-assisted MgCl2 solubilization mechanism. Adv Funct Mater 30:1909370

    Article  CAS  Google Scholar 

  51. YueGuo ZH, Wang JW, Peng ZP, Zhu JF, Ji HX, Wan LJ (2020) Rechargeable aluminium–sulfur battery with improved electrochemical performance by cobalt-containing electrocatalyst. Angew Chem Int Ed 132:22963–22967

    Google Scholar 

  52. Ye C, Shan J, Chao D, Liang P, Jiao Y, Hao J, Gu Q, Davey K, Wang H, Qiao SZ (2021) Catalytic oxidation of K2S via atomic Co and pyridinic N synergy in potassium-sulfur batteries. J Am Chem Soc 143:16902–16907

    Article  CAS  PubMed  Google Scholar 

  53. Yuan X, Zhu B, Feng J, Wang C, Cai X, Qin R (2021) High-performance stable potassium–sulfur batteries enabled by free-standing CNT film-based composite cathodes. J Electron Mater 50:3037–3042

    Article  CAS  Google Scholar 

  54. Li Z, Vinayan BP, Diemant T, Behm RJ, Fichtner M, Zhao-Karger Z (2020) Rechargeable calcium-sulfur batteries enabled by an efficient borate-based electrolyte. Small 16:e2001806

    Article  PubMed  CAS  Google Scholar 

  55. Li W, Wang K, Jiang K (2020) A low cost aqueous Zn-S battery realizing ultrahigh energy density. Adv Sci 7:2000761

    Article  CAS  Google Scholar 

  56. Zhao Z, Pathak R, Wang X, Yang Z, Li H, Qiao Q (2020) Sulfiphilic FeP/rGO as a highly efficient sulfur host for propelling redox kinetics toward stable lithium-sulfur battery. Electrochim Acta 364:137117

    Article  CAS  Google Scholar 

  57. Xu Y, Zhou G, Zhao S, Li W, Shi F, Li J, Feng J, Zhao Y, Wu Y, Guo J, Cui Y, Zhang Y (2019) Improving a Mg/S battery with YCl3 additive and magnesium polysulfide. Adv Sci 6:1800981

    Article  CAS  Google Scholar 

  58. Ng SF, Lau MYL, Ong WJ (2021) Lithium-sulfur battery cathode design: tailoring metal-based nanostructures for robust polysulfide adsorption and catalytic conversion. Adv Mater 33:e2008654

    Article  PubMed  CAS  Google Scholar 

  59. Zou Q, Sun Y, Liang Z, Wang W, Lu YC (2021) Achieving efficient magnesium–sulfur battery chemistry via polysulfide mediation. Adv Energy Mater 11:2101552

    Article  CAS  Google Scholar 

  60. Shi K, Lin Y, **ong Z, Li J, Zhang S, Liu Q (2022) Synergistic effects of porphyrin-ring catalytic center and metal catalytic site from crosslinked porphyrin-based porous polyimides cathode host for lithium polysulfides conversion in lithium-sulfur batteries. Chem Engineering J 430:132692

    Article  CAS  Google Scholar 

  61. Pai R, Natu V, Sokol M, Carey M, Greszler T, Barsoum MW, Kalra V (2022) Sulfur confined MXene hosts enabling the use of carbonate-based electrolytes in alkali metal (Li/Na/K)-sulfur batteries. Mater Today Energy 27:101000

    Article  CAS  Google Scholar 

  62. Gao R, Wang Z, Liu S, Shao G, Gao X (2022) Metal phosphides and borides as the catalytic host of sulfur cathode for lithium–sulfur batteries. Int J Min Met Mater 29:990–1002

    Article  CAS  Google Scholar 

  63. Liu G, Yuan C, Zeng P, Cheng C, Yan T, Dai K, Mao J, Zhang L (2022) Bidirectionally catalytic polysulfide conversion by high-conductive metal carbides for lithium-sulfur batteries. J Energy Chem 67:73–81

    Article  Google Scholar 

  64. Luo D, Li C, Zhang Y, Ma Q, Ma C, Nie Y, Li M, Weng X, Huang R, Zhao Y, Shui L, Wang X, Chen Z (2022) Design of quasi-MOF nanospheres as a dynamic electrocatalyst toward accelerated sulfur reduction reaction for high-performance lithium-sulfur batteries. Adv Mater 34:e2105541

    Article  PubMed  CAS  Google Scholar 

  65. Zhang Z, Chen C, Xu J, Lin Z, Lin Z (2022) Nanoporous cobalt–nitrogen–carbon catalyst-based multifunctional interlayer for enhanced Li–S battery performance. ACS Appl Energy Mater 5:4691–4697

    Article  CAS  Google Scholar 

  66. Zhao Z, Yin W, Li H, Jiao Y, Lei D, Li Y, Guo J, Bai W, **ang M (2022) Low temperature synthesis of hierarchically porous carbon host for durable lithium-sulfur batteries. Micropor Mesopor Mater 337:111946

    Article  CAS  Google Scholar 

  67. Wang X, Yang L, Li Q, Wang Y, Zhong Y, Song Y, Chen Y, Wu Z, Zhong B, Guo X (2022) TiO2@chlorella-based biomass carbon modified separator for high-rate lithium–sulfur batteries. Ind Eng Chem Res 61:1761–1772

    Article  CAS  Google Scholar 

  68. Yang K, Kim S, Yang X, Cho M, Lee Y (2022) Binder-free and high-loading cathode realized by hierarchical structure for potassium-sulfur batteries. Small Methods 6:e2100899

    Article  PubMed  CAS  Google Scholar 

  69. Cheng M, Yan R, Yang Z, Tao X, Ma T, Cao S, Ran F, Li S, Yang W, Cheng C (2022) Polysulfide catalytic materials for fast-kinetic metal-sulfur batteries: principles and active centers. Adv Sci 9:e2102217

    Article  CAS  Google Scholar 

  70. **-Yao Li SF, Zhao M, Zhao C-X, Chen X, Li B-Q, Huang J-Q, Zhang Q (2022) Surface gelation on disulfide electrocatalysts in lithium-sulfur batteries. Angew. Chem. Int. Ed. 61:e202114671

    Google Scholar 

  71. He J, Zhou K, Chen Y, Xu C, Lin J, Zhang W (2016) Wrinkled sulfur@graphene microspheres with high sulfur loading as superior-capacity cathode for Li S batteries, Mater. Today. Energy 1–2:11–16

    Google Scholar 

  72. Zheng C, Niu S, Lv W, Zhou G, Li J, Fan S, Deng Y, Pan Z, Li B, Kang F, Yang Q-H (2017) Propelling polysulfides transformation for high-rate and long-life lithium–sulfur batteries. Nano Energy 33:306–312

    Article  CAS  Google Scholar 

  73. Wang N, Chen B, Qin K, Liu E, Shi C, He C, Zhao N (2019) Rational design of Co9S8/CoO heterostructures with well-defined interfaces for lithium sulfur batteries: a study of synergistic adsorption-electrocatalysis function. Nano Energy 60:332–339

    Article  CAS  Google Scholar 

  74. Xu M, Wu T, Qi J, Zhou D, **ao Z (2021) V2C/VO2 nanoribbon intertwined nanosheet dual heterostructure for highly flexible and robust lithium–sulfur batteries. J Mater Chem A 9:21429–21439

    Article  CAS  Google Scholar 

  75. Qi J, Wu T, Xu M, **ao Z (2021) Hierarchical assembly of CNTs-VSe2-VOx/S for flexible lithium-sulfur batteries. ACS Appl Mater Interfaces 13:39186–39194

    Article  CAS  PubMed  Google Scholar 

  76. Xu M, Liang L, Qi J, Wu T, Zhou D, **ao Z (2021) Intralayered Ostwald ripening-induced self-catalyzed growth of CNTs on MXene for robust lithium-sulfur batteries. Small 17:e2007446

    Article  PubMed  CAS  Google Scholar 

  77. Wu T, Qi J, Xu M, Zhou D, **ao Z (2020) Selective S/Li2S conversion via in-built crystal facet self-mediation: toward high volumetric energy density lithium-sulfur batteries. ACS Nano 14:15011–15022

    Article  PubMed  CAS  Google Scholar 

  78. Liang L, Niu L, Wu T, Zhou D, **ao Z (2022) Fluorine-free fabrication of MXene via photo-Fenton approach for advanced lithium-sulfur batteries. ACS Nano 16:7971–7981

    Article  CAS  Google Scholar 

  79. Zhong ME, Guan J, Sun J, Shu X, Ding H, Chen L, Zhou N, **ao Z (2021) A cost- and energy density-competitive lithium-sulfur battery. Energy Storage Mater 41:588–598

    Article  Google Scholar 

  80. Chen M, Wu T, Zhou D, **ao Z (2021) Anti-heterogeneous catalysis revealed by the amidomagnesium halide chemistry in lithium sulfur batteries. J Catal 404:999–1006

    Article  CAS  Google Scholar 

  81. Xu X, Zhao X, Hui KS, Dinh DA, Hui KN (2021) Rechargeable batteries: regulating electronic and ionic transports for high electrochemical performance. Adv Mater Technol 7:2101107

    Article  CAS  Google Scholar 

  82. Kyom Kim D, SeulByun J, Moon S, Choi J, Ha Chang J, Suk J (2022) Molten salts approach of metal-organic framework-derived nitrogen-doped porous carbon as sulfur host for lithium-sulfur batteries. Chem. Engineering J. 441:135945

    Article  CAS  Google Scholar 

  83. Zhao R, Liang Z, Zou R, Xu Q (2018) Metal-organic frameworks for batteries. Joule 2:2235–2259

    Article  CAS  Google Scholar 

  84. Liu J, Song Y, Lin C, **e Q, Peng D-L, **e R-J (2021) Regulating Li+ migration and Li2S deposition by metal-organic framework-derived Co4S3-embedded carbon nanoarrays for durable lithium-sulfur batteries. Sci China Mater 65:947–957

    Article  CAS  Google Scholar 

  85. Liu A, Liang X, Ren X, Guan W, Ma T (2021) Recent progress in MXene-based materials for metal-sulfur and metal-air batteries: potential high-performance electrodes. Electrochem Energy Rev 5:112–144

    Article  CAS  Google Scholar 

  86. Zhao Q, Zhu Q, Liu Y, Xu B (2021) Status and prospects of MXene-based lithium–sulfur batteries. Adv Funct Mater 31:2100457

    Article  CAS  Google Scholar 

  87. Zhang Y, Wu Y, Liu Y, Feng J (2022) Flexible and freestanding heterostructures based on COF-derived N-doped porous carbon and two-dimensional MXene for all-solid-state lithium-sulfur batteries. Chem Engineering J 428:131040

    Article  CAS  Google Scholar 

  88. **ao R, Chen K, Zhang X, Yang Z, Hu G, Sun Z, Cheng H-M, Li F (2021) Single-atom catalysts for metal-sulfur batteries: current progress and future perspectives. J Energy Chem 54:452–466

    Article  Google Scholar 

  89. Liang Z, Shen J, Xu X, Li F, Liu J, Yuan B, Yu Y, Zhu M (2022) Advances in the development of single-atom catalysts for high-energy-density lithium-sulfur batteries. Adv Mater 34:e2200102

    Article  PubMed  CAS  Google Scholar 

  90. Wang J, Qiu W, Li G, Liu J, Luo D, Zhang Y, Zhao Y, Zhou G, Shui L, Wang X, Chen Z (2022) Coordinatively deficient single-atom Fe-N-C electrocatalyst with optimized electronic structure for high-performance lithium-sulfur batteries. Energy Storage Mater 46:269–277

    Article  Google Scholar 

  91. Wang Y, Shi C, Sha J, Ma L, Liu E, Zhao N (2022) Single-atom cobalt supported on nitrogen-doped three-dimensional carbon facilitating polysulfide conversion in lithium-sulfur batteries. ACS Appl Mater Interfaces 14:25337–25347

    Article  CAS  PubMed  Google Scholar 

  92. Yan Y, Zhang P, Qu Z, Tong M, Zhao S, Li Z, Liu M, Lin Z (2020) Carbon/sulfur aerogel with adequate mesoporous channels as robust polysulfide confinement matrix for highly stable lithium-sulfur battery. Nano Lett 20:7662–7669

    Article  CAS  PubMed  Google Scholar 

  93. Liu YT, Liu S, Li GR, Yan TY, Gao XP (2020) High volumetric energy density sulfur cathode with heavy and catalytic metal oxide host for lithium-sulfur battery. Adv Science 7:1903693

    Article  CAS  Google Scholar 

  94. Wang Z-Y, Han D-D, Liu S, Li G-R, Yan T-Y, Gao X-P (2020) Conductive RuO2 stacking microspheres as an effective sulfur immobilizer for lithium–sulfur battery. Electrochim Acta 337:135772

    Article  CAS  Google Scholar 

  95. Wang L, Song YH, Zhang BH, Liu YT, Wang ZY, Li GR, Liu S, Gao XP (2020) Spherical metal oxides with high tap density as sulfur host to enhance cathode volumetric capacity for lithium–sulfur battery. ACS Appl Mater Interfaces 12:5909–5919

    Article  PubMed  CAS  Google Scholar 

  96. Luo S, Ruan J, Wang Y, Hu J, Song Y, Chen M, Wu L (2021) Flower-like interlayer-expanded MoS2-x nanosheets confined in hollow carbon spheres with high-efficiency electrocatalysis sites for advanced sodium-sulfur battery. Small 17:e2101879

    Article  PubMed  CAS  Google Scholar 

  97. Ye X, Ruan J, Pang Y, Yang J, Liu Y, Huang Y, Zheng S (2021) Enabling a stable room-temperature sodium-sulfur battery cathode by building heterostructures in multichannel carbon fibers. ACS Nano 15:5639–5648

    Article  CAS  PubMed  Google Scholar 

  98. Chu W, Zhang X, Wang J, Zhao S, Liu S, Yu H (2019) A low-cost deep eutectic solvent electrolyte for rechargeable aluminum-sulfur battery. Energy Storage Mater 22:418–423

    Article  Google Scholar 

  99. Zheng X, Tang R, Zhang Y, Ma L, Wang X, Dong Y, Kong G, Wei L (2020) Design of a composite cathode and a graphene coated separator for a stable room-temperature aluminum–sulfur battery, Sustain. Energy Fuels 4:1630–1641

    CAS  Google Scholar 

  100. Yu X, Boyer MJ, Hwang GS, Manthiram A (2018) Room-temperature aluminum-sulfur batteries with a lithium-ion-mediated ionic liquid electrolyte. Chem 4:586–598

    Article  CAS  Google Scholar 

  101. Zhao X, Hong Y, Cheng M, Wang S, Zheng L, Wang J, Xu Y (2020) High performance potassium–sulfur batteries and their reaction mechanism. J Mater Chem A 8:10875–10884

    Article  CAS  Google Scholar 

  102. **ong P, Han X, Zhao X, Bai P, Liu Y, Sun J, Xu Y (2019) Room-temperature potassium-sulfur batteries enabled by microporous carbon stabilized small-molecule sulfur cathodes. ACS Nano 13:2536–2543

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by funding from the Qilu University of Technology (Shandong Academy of Sciences) and the Youth Innovation and Technology Support Program of Higher Education in Shandong (2019KJA015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **aolong Xu, Yanfei Qi or **aomei Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Ge, S., Qi, Y. et al. A mini-review of metal sulfur batteries. Ionics 28, 4501–4513 (2022). https://doi.org/10.1007/s11581-022-04718-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04718-w

Keywords

Navigation