Log in

Controllable preparation of green biochar based high-performance supercapacitors

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

With the higher demand for energy storage device performance, supercapacitors have attracted increasing interest because of their high power density, stable cycling capability, and wide range of operating temperatures. Various carbon materials are used as electrode materials for supercapacitors. To deal with the worsening energy crisis, biomass, as a green renewable resource, has been widely used in many fields. Biochar, with its naturally porous structure and abundant surface functional groups, is considered a promising candidate for the development of energy storage. However, their inherent inhomogeneity and random uncontrollability result in relatively low performance, greatly limiting their future applications. There is a great need to develop effective methods to produce more desirable carbon materials from this rich and diverse renewable resource. This critical review points out the significance of controllable production for improving the electrochemical performance of biochar supercapacitors, and the recent research achievements of controllable design and development of new biochar materials. Factors affecting the electrochemical performance of biochar materials are discussed from the perspective of structural design and control. An in-depth summary of various promising approaches used in recent years to achieve major research breakthroughs and innovations is provided. Finally, current challenges, future research directions, and opportunities in the renewable energy storage field of biochar-based supercapacitors are discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Raza W, Ali F, Raza N, Luo Y, Kim K-H, Yang J, Kumar S, Mehmood A, Kwon EE (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473

    Article  CAS  Google Scholar 

  2. Jia Y, Jiang Q, Sun H, Liu P, Hu D, Pei Y, Liu W, Crispin X, Fabiano S, Ma Y, Cao Y (2021) Wearable Thermoelectric Materials and Devices for Self‐Powered Electronic Systems. Adv Mater 2102990

  3. Vallem V, Roosa E, Ledinh T, Jung W, Kim TI, Rashid-Nadimi S, Kiani A, Dickey MD (2021) A Soft Variable-Area Electrical-Double-Layer Energy Harvester. Adv Mater e2103142

  4. Liu YC, Su H, Li RQ, Li XT, Xu YS, Dai XP, Zhou YY, Wang HB (2017) Comparative transcriptome analysis of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) reveals novel insights into heat stress tolerance in insects. Bmc Genomics 18

  5. Yan J, Wang Q, Wei T, Fan ZJ (2014) Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities. Adv Energy Mater 4

  6. Bi ZH, Kong QQ, Cao YF, Sun GH (2019) Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. J Mater Chem A 7:16028–16045

    Article  CAS  Google Scholar 

  7. Beguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26(2219–2251):2283

    Article  Google Scholar 

  8. Zhang YZ, Wang Y, Cheng T, Yao LQ, Li X, Lai WY, Huang W (2019) Printed supercapacitors: materials, printing and applications. Chem Soc Rev 48:3229–3264

    Article  CAS  PubMed  Google Scholar 

  9. Young C, Park T, Yi JW, Kim J, Hossain MSA, Kaneti YV, Yamauchi Y (2018) Advanced Functional Carbons and Their Hybrid Nanoarchitectures towards Supercapacitor Applications. Chemsuschem 11:3546–3558

    Article  CAS  PubMed  Google Scholar 

  10. Horn M, Gupta B, MacLeod J, Liu J, Motta N (2019) Graphene-based supercapacitor electrodes: Addressing challenges in mechanisms and materials. Curr Opin Green Sustain Chem 17:42–48

    Article  Google Scholar 

  11. Yang H (2020) A comparative study of supercapacitor capacitance characterization methods. J Energy Storage 29

  12. Kumar S, Saeed G, Zhu L, Hui KN, Kim NH, Lee JH (2021) 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review. Chem Eng J 403:126352

    Article  CAS  Google Scholar 

  13. Conway BE, Pell WG (2003) Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J Solid State Electrochem 7:637–644

    Article  CAS  Google Scholar 

  14. Yan J, Wang Q, Lin CP, Wei T, Fan ZJ (2014) Interconnected Frameworks with a Sandwiched Porous Carbon Layer/Graphene Hybrids for Supercapacitors with High Gravimetric and Volumetric Performances. Adv Energy Mater 4

  15. Mu JH, Wong SL, Li Q, Zhou PF, Zhou J, Zhao Y, Sunarso J, Zhuo SP (2020) Fishbone-derived N-doped hierarchical porous carbon as an electrode material for supercapacitor. J Alloys Compd 832:154950

    Article  CAS  Google Scholar 

  16. Poonam, Sharma K, Arora A, Tripathi SK (2019) Review of supercapacitors: Materials and devices. J Energy Storage 21:801-825

  17. Raghavendra KVG, Vinoth R, Zeb K, MuraleeGopi CVV, Sambasivam S, Kummara MR, Obaidat IM, Kim HJ (2020) An intuitive review of supercapacitors with recent progress and novel device applications. J Energy Storage 31:101652

    Article  Google Scholar 

  18. Yang Z, Tian J, Yin Z, Cui C, Qian W, Wei F (2019) Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review. Carbon 141:467–480

    Article  CAS  Google Scholar 

  19. Abioye AM, Ani FN (2015) Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review. Renew Sustain Energy Rev 52:1282–1293

    Article  CAS  Google Scholar 

  20. Liu W-J, Jiang H, Yu H-Q (2019) Emerging applications of biochar-based materials for energy storage and conversion. Energy Environ Sci 12:1751–1779

    Article  CAS  Google Scholar 

  21. Liu WJ, Jiang H, Yu HQ (2015) Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material. Chem Rev 115:12251–12285

    Article  CAS  PubMed  Google Scholar 

  22. Qin C, Wang S, Wang Z, Ji K, Wang S, Zeng X, Jiang X, Liu G (2021) Hierarchical porous carbon derived from Gardenia jasminoides Ellis flowers for high performance supercapacitor. J Energy Storage 33:102061

    Article  Google Scholar 

  23. Fu H-h, Chen L, Gao H, Yu X, Hou J, Wang G, Yu F, Li H, Fan C, Shi Y-l, Guo X (2020) Walnut shell-derived hierarchical porous carbon with high performances for electrocatalytic hydrogen evolution and symmetry supercapacitors. Int J Hydrogen Energy 45:443–451

    Article  CAS  Google Scholar 

  24. Wang J, Ma C, Su L, Gong L, Dong D, Wu Z (2020) Self-Assembly/Sacrificial Synthesis of Highly Capacitive Hierarchical Porous Carbon from Longan Pulp Biomass. ChemElectroChem 7:4606–4613

    Article  CAS  Google Scholar 

  25. Samantray R, Karnan M, Vivekanand, Subramani K, Anjeline CJ, Mishra SC, Sathish M (2021) A facile approach to fabricate Saccharum spontaneum-derived porous carbon-based supercapacitors for excellent energy storage performance in redox active electrolytes. Sustain Energy Fuels 5:518–531

    Article  CAS  Google Scholar 

  26. Ma Z, Zhang Z, Qu Y, Lai F, Li Q, Wu X, Wu Q, Li Q, Wang H, Huang Y (2019) Yeast protein derived hierarchical mesoporous carbon for symmetrical capacitor with excellent electrochemical performances. Microporous Mesoporous Mater 281:50–56

    Article  CAS  Google Scholar 

  27. Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on Earth. Proc Natl Acad Sci U S A 115:6506–6511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mohd A, Ab Karim Ghani WAW, Resitanim NZ, Sanyang L (2013) A Review: Carbon Dioxide Capture: Biomass-Derived-Biochar and Its Applications. J Dispersion Sci Technol 34:974–984

    Article  CAS  Google Scholar 

  29. Kalyani P, Anitha A (2013) Biomass carbon & its prospects in electrochemical energy systems. Int J Hydrogen Energy 38:4034–4045

    Article  CAS  Google Scholar 

  30. Bader N, Ouederni A (2016) Optimization of biomass-based carbon materials for hydrogen storage. J Energy Storage 5:77–84

    Article  Google Scholar 

  31. Chen B, Ma Q, Tan C, Lim TT, Huang L, Zhang H (2015) Carbon-Based Sorbents with Three-Dimensional Architectures for Water Remediation. Small 11:3319–3336

    Article  CAS  PubMed  Google Scholar 

  32. Kant Pandey P, Pandey M, Sharma R (2012) Defluoridation of Water by a Biomass: Tinospora cordifolia. J Environ Prot 03:610–616

    Article  CAS  Google Scholar 

  33. Pan FP, Cao ZY, Zhao QP, Liang HY, Zhang JY (2014) Nitrogen-doped porous carbon nanosheets made from biomass as highly active electrocatalyst for oxygen reduction reaction. J Power Sources 272:8–15

    Article  CAS  Google Scholar 

  34. Rezazad H, Vahdati-Khajeh S, Eftekhari-Sis B (2020) Egg yolk biomass derived carbon material as a highly efficient and reusable hydrophobic oil-absorbent. J Porous Mater 27:1439–1446

    Article  CAS  Google Scholar 

  35. Wang S, Li Q, Hu K, Wang S, Liu Q, Kong X (2021) A facile synthesis of bare biomass derived holey carbon absorbent for microwave absorption. Appl Surf Sci 544:148891

    Article  CAS  Google Scholar 

  36. Ruan C-P, Ai K-L, Lu L-H (2014) Biomass-derived carbon materials for high-performance supercapacitor electrodes. RSC Adv 4:30887

    Article  CAS  Google Scholar 

  37. Wang J, Nie P, Ding B, Dong S, Hao X, Dou H, Zhang X (2017) Biomass derived carbon for energy storage devices. J Mater Chem A 5:2411–2428

    Article  CAS  Google Scholar 

  38. Gao Z, Zhang YY, Song NN, Li XD (2016) Biomass-derived renewable carbon materials for electrochemical energy storage. Mater Res Lett 5:69–88

    Article  CAS  Google Scholar 

  39. Wang Q, Yan J, Fan Z (2016) Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ Sci 9:729–762

    Article  CAS  Google Scholar 

  40. Li Z, Guo D, Liu Y, Wang H, Wang L (2020) Recent advances and challenges in biomass-derived porous carbon nanomaterials for supercapacitors. Chem Eng J 397:125418

    Article  CAS  Google Scholar 

  41. Yang V, Arumugam Senthil R, Pan J, Rajesh Kumar T, Sun Y, Liu X (2020) Hierarchical porous carbon derived from jujube fruits as sustainable and ultrahigh capacitance material for advanced supercapacitors. J Colloid Interface Sci 579:347–356

    Article  CAS  PubMed  Google Scholar 

  42. Simon P, Gogogtsi Y (2013) Capacitive Energy Storage in Nanostructured Carbon-Electrolyte Systems. Acc Chem Res 46:1094–1103

    Article  CAS  PubMed  Google Scholar 

  43. **ng J, Tao P, Wu Z, **ng C, Liao X, Nie S (2019) Nanocellulose-graphene composites: A promising nanomaterial for flexible supercapacitors. Carbohydr Polym 207:447–459

    Article  CAS  PubMed  Google Scholar 

  44. Azwar E, Wan Mahari WA, Chuah JH, Vo D-VN, Ma NL, Lam WH, Lam SS (2018) Transformation of biomass into carbon nanofiber for supercapacitor application – A review. Int J Hydrogen Energy 43:20811–20821

    Article  CAS  Google Scholar 

  45. Korkmaz S, Kariper İA (2020) Graphene and graphene oxide based aerogels: Synthesis, characteristics and supercapacitor applications. J Energy Storage 27:101038

    Article  Google Scholar 

  46. Bai Y, Liu R, Li E, Li X, Liu Y, Yuan G (2019) Graphene/Carbon Nanotube/Bacterial Cellulose assisted supporting for polypyrrole towards flexible supercapacitor applications. J Alloy Compd 777:524–530

    Article  CAS  Google Scholar 

  47. Chang C, Li M, Wang H, Wang S, Liu X, Liu H, Li L (2019) A novel fabrication strategy for doped hierarchical porous biomass-derived carbon with high microporosity for ultrahigh-capacitance supercapacitors. J Mater Chem A 7:19939–19949

    Article  CAS  Google Scholar 

  48. Vijayakumar M, Bharathi Sankar A, Sri Rohita D, Rao TN, Karthik M (2019) Conversion of Biomass Waste into High Performance Supercapacitor Electrodes for Real-Time Supercapacitor Applications. ACS Sustain Chem Eng 7:17175–17185

    Article  CAS  Google Scholar 

  49. Xu Y, Lei H, Qi S, Ren F, Peng H, Wang F, Li L, Zhang W, Ma G (2020) Three-dimensional zanthoxylum Leaves-Derived nitrogen-Doped porous carbon frameworks for aqueous supercapacitor with high specific energy. J Energy Storage 32:101970

    Article  Google Scholar 

  50. Wang Q, Qin B, Li H-X, Zhang X-H, Tian X, Le **, Cao Q (2020) Honeycomb-like carbon with tunable pore size from bio-oil for supercapacitor. Microporous Mesoporous Mater 309:110551

    Article  CAS  Google Scholar 

  51. Gopalakrishnan A, Raju TD, Badhulika S (2020) Green synthesis of nitrogen, sulfur-co-doped worm-like hierarchical porous carbon derived from ginger for outstanding supercapacitor performance. Carbon 168:209–219

    Article  CAS  Google Scholar 

  52. Chen H, Lu X, Wang H, Sui D, Meng F, Qi W (2020) Controllable fabrication of nitrogen-doped porous nanocarbons for high-performance supercapacitors via supramolecular modulation strategy. J Energy Chem 49:348–357

    Article  Google Scholar 

  53. He J, Zhang D, Wang Y, Zhang J, Yang B, Shi H, Wang K, Wang Y (2020) Biomass-derived porous carbons with tailored graphitization degree and pore size distribution for supercapacitors with ultra-high rate capability. Appl Surf Sci 515:146020

    Article  CAS  Google Scholar 

  54. Zhang W, Zou Y, Yu C, Zhong W (2019) Nitrogen-enriched compact biochar-based electrode materials for supercapacitors with ultrahigh volumetric performance. J Power Sources 439:227067

    Article  CAS  Google Scholar 

  55. Hasegawa G, Deguchi T, Kanamori K, Kobayashi Y, Kageyama H, Abe T, Nakanishi K (2015) High-Level Do** of Nitrogen, Phosphorus, and Sulfur into Activated Carbon Monoliths and Their Electrochemical Capacitances. Chem Mater 27:4703–4712

    Article  CAS  Google Scholar 

  56. Ghosh S, Barg S, Jeong SM, Ostrikov K (2020) Heteroatom-Doped and Oxygen-Functionalized Nanocarbons for High-Performance Supercapacitors. Adv Energy Mater 10:2001239

    Article  CAS  Google Scholar 

  57. Wang H, Fan R, Miao J, Deng J, Wang Y (2019) Oxygen Groups Immobilized on Micropores for Enhancing the Pseudocapacitance. ACS Sustain Chem Eng 7:11407–11414

    Article  CAS  Google Scholar 

  58. Wang C, Wang H, Yang C, Dang B, Li C, Sun Q (2020) A multilevel gradient structural carbon derived from naturally preprocessed biomass. Carbon 168:624–632

    Article  CAS  Google Scholar 

  59. Gopalakrishnan A, Badhulika S (2020) Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications. J Power Sources 480:228830

    Article  CAS  Google Scholar 

  60. Hu Z, Zhao X, Li Z, Li S, Sun P, Wang G, Zhang Q, Liu J, Zhang L (2021) Secondary Bonding Channel Design Induces Intercalation Pseudocapacitance toward Ultrahigh-Capacity and High-Rate Organic Electrodes. Adv Mater e2104039

  61. Muzaffar A, Ahamed MB, Deshmukh K, Thirumalai J (2019) A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renew Sustain Energy Rev 101:123–145

    Article  CAS  Google Scholar 

  62. Zhang S-W, Yin B-S, Liu X-X, Gu D-M, Gong H, Wang Z-B (2019) A high energy density aqueous hybrid supercapacitor with widened potential window through multi approaches. Nano Energy 59:41–49

    Article  CAS  Google Scholar 

  63. Zhao N, Deng L, Luo D, Zhang P (2020) One-step fabrication of biomass-derived hierarchically porous carbon/MnO nanosheets composites for symmetric hybrid supercapacitor. Appl Surface Sci 526:146696

    Article  CAS  Google Scholar 

  64. Yu D, Zheng X, Chen M, Dong X (2019) Large-scale synthesis of Ni(OH)2/peach gum derived carbon nanosheet composites with high energy and power density for battery-type supercapacitor. J Colloid Interface Sci 557:608–616

    Article  CAS  PubMed  Google Scholar 

  65. Chen R, Li X, Huang Q, Ling H, Yang Y, Wang X (2021) Self-assembled porous biomass carbon/RGO/nanocellulose hybrid aerogels for self-supporting supercapacitor electrodes. Chem Eng J 412:128755

    Article  CAS  Google Scholar 

  66. Zhang M, Song Z, Liu H, Ma T (2020) Biomass-derived highly porous nitrogen-doped graphene orderly supported NiMn2O4 nanocrystals as efficient electrode materials for asymmetric supercapacitors. Appl Surf Sci 507:145065

    Article  CAS  Google Scholar 

  67. Li M, Yu J, Wang X, Yang Z (2020) 3D porous MnO2@carbon nanosheet synthesized from rambutan peel for high-performing supercapacitor electrodes materials. Appl Surf Sci 530:147230

    Article  CAS  Google Scholar 

  68. Nanaji K, Upadhyayula V, Rao TN, Anandan S (2018) Robust, Environmentally Benign Synthesis of Nanoporous Graphene Sheets from Biowaste for Ultrafast Supercapacitor Application. ACS Sustain Chem Eng 7:2516–2529

    Article  CAS  Google Scholar 

  69. Nirosha B, Selvakumar R, Jeyanthi J, Vairam S (2020) Elaeocarpus tectorius derived phosphorus-doped carbon as an electrode material for an asymmetric supercapacitor. New J Chem 44:181–193

    Article  Google Scholar 

  70. Qiang L, Hu Z, Li Z, Yang Y, Wang X, Zhou Y, Zhang X, Wang W, Wang Q (2019) Buckwheat husk-derived hierarchical porous nitrogen-doped carbon materials for high-performance symmetric supercapacitor. J Porous Mater 26:1217–1225

    Article  CAS  Google Scholar 

  71. Li Y, Liu S, Liang Y, **ao Y, Dong H, Zheng M, Hu H, Liu Y (2019) Bark-Based 3D Porous Carbon Nanosheet with Ultrahigh Surface Area for High Performance Supercapacitor Electrode Material. ACS Sustain Chem Eng 7:13827–13835

    Article  CAS  Google Scholar 

  72. Zhang J, Chen H, Ma Z, Li H, Dong Y, Yang H, Yang L, Bai L, Wei D, Wang W (2020) A lignin dissolution-precipitation strategy for porous biomass carbon materials derived from cherry stones with excellent capacitance. J Alloys Compd 832:155029

    Article  CAS  Google Scholar 

  73. Wen Y, Chi L, Wenelska K, Wen X, Chen X, Mijowska E (2020) Eucalyptus derived heteroatom-doped hierarchical porous carbons as electrode materials in supercapacitors. Sci Rep 10:14631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tabarov FS, Astakhov MV, Kalashnik AT, Klimont AA, Krechetov IS, Isaeva NV (2019) Micro-Mesoporous Carbon Materials Prepared from the Hogweed (Heracleum) Stalks as Electrode Materials for Supercapacitors. Russ J Electrochem 55:265–271

    Article  Google Scholar 

  75. Liu J, Min S, Wang F, Zhang Z (2020) Biomass-derived three-dimensional porous carbon membrane electrode for high-performance aqueous supercapacitors: An alternative of powdery carbon materials. J Power Sources 466:228347

    Article  CAS  Google Scholar 

  76. Zhang L, Xu Q, Wang X, Sun Q, He F, Pan W, **e H (2020) N, S co-doped hierarchical porous carbon from Chinese herbal residues for high-performance supercapacitors and oxygen reduction reaction. RSC Adv 10:41532–41541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ramirez N, Sardella F, Deiana C, Schlosser A, Müller D, Kißling PA, Klepzig LF, Bigall NC (2020) Capacitive behavior of activated carbons obtained from coffee husk. RSC Adv 10:38097–38106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yao Y, Feng Q, Huo B, Zhou H, Huang Z, Li H, Yan Z, Yang X, Kuang Y (2020) Facile self-templating synthesis of heteroatom-doped 3D porous carbon materials from waste biomass for supercapacitors. Chem Commun (Camb) 56:11689–11692

    Article  CAS  Google Scholar 

  79. Lei J, Guo Q, Yao W, Duan T, Chen P, Zhu W (2018) Bioconcentration of organic dyes via fungal hyphae and their derived carbon fibers for supercapacitors. J Mater Chem A 6:10710–10717

    Article  CAS  Google Scholar 

  80. Wang Q, Qin B, Zhang X, **e X, ** Le, Cao Q (2018) Synthesis of N-doped carbon nanosheets with controllable porosity derived from bio-oil for high-performance supercapacitors. J Mater Chem A 6:19653–19663

    Article  CAS  Google Scholar 

  81. Zhang H, Zhang Z, Luo J-D, Qi X-T, Yu J, Cai J-X, Wei J-c, Yang Z-Y (2019) A Chemical Blowing Strategy to Fabricate Biomass-Derived Carbon-Aerogels with Graphene-Like Nanosheet Structures for High-Performance Supercapacitors. Chemsuschem 12:2462–2470

    PubMed  Google Scholar 

  82. Hou J, Cao C, Idrees F, Ma X (2015) Hierarchical Porous Nitrogen-Doped Carbon Nanosheets Derived from Silk for Ultrahigh-Capacity Battery Anodes and Supercapacitors. ACS Nano 9:2556–2564

    Article  CAS  PubMed  Google Scholar 

  83. Yang J, Tan Z, Chen X, Liang Y, Zheng M, Hu H, Dong H, Liu X, Liu Y, **ao Y (2021) A mild method to prepare nitrogen-rich interlaced porous carbon nanosheets for high-performance supercapacitors. J Colloid Interface Sci 599:381–389

    Article  CAS  PubMed  Google Scholar 

  84. He D, Zhao W, Li P, Sun S, Tan Q, Han K, Liu L, Liu L, Qu X (2019) Bifunctional biomass-derived N, S dual-doped ladder-like porous carbon for supercapacitor and oxygen reduction reaction. J Alloy Compd 773:11–20

    Article  CAS  Google Scholar 

  85. Zhang J, Chen H, Bai J, Xu M, Luo C, Yang L, Bai L, Wei D, Wang W, Yang H (2021) N-doped hierarchically porous carbon derived from grape marcs for high-performance supercapacitors. J Alloys Compd 854:157207

    Article  CAS  Google Scholar 

  86. Divya P, Rajalakshmi R (2020) Renewable low cost green functional mesoporous electrodes from Solanum lycopersicum leaves for supercapacitors. J Energy Storage 27:101149

    Article  Google Scholar 

  87. Mehare MD, Deshmukh AD, Dhoble SJ (2019) Preparation of porous agro-waste-derived carbon from onion peel for supercapacitor application. J Mater Sci 55:4213–4224

    Article  CAS  Google Scholar 

  88. Yan J (2020) Nitrogen-doped Oxygen-rich Activated Carbon Derived from Longan Shell for Supercapacitors. Int J Electrochem Sci 1982–1995

  89. Liu Z, Hu J, Shen F, Tian D, Huang M, He J, Zou J, Zhao L, Zeng Y (2021) Trichoderma bridges waste biomass and ultra-high specific surface area carbon to achieve a high-performance supercapacitor. J Power Sources 497:229880

    Article  CAS  Google Scholar 

  90. Zheng L-H, Chen M-H, Liang S-X, Lü Q-F (2021) Oxygen-rich hierarchical porous carbon derived from biomass waste-kapok flower for supercapacitor electrode. Diam Relat Mater 113:108267

    Article  CAS  Google Scholar 

  91. Ariharan A, Ramesh K, Vinayagamoorthi R, Rani MS, Viswanathan B, Ramaprabhu S, Nandhakumar V (2021) Biomass derived phosphorous containing porous carbon material for hydrogen storage and high-performance supercapacitor applications. J Energy Storage 35:102185

    Article  Google Scholar 

  92. Deng Y, Ji Y, Wu H, Chen F (2019) Enhanced electrochemical performance and high voltage window for supercapacitor based on multi-heteroatom modified porous carbon materials. Chem Commun (Camb) 55:1486–1489

    Article  CAS  Google Scholar 

  93. Bi H, He X, Zhang H, Li H, **ao N, Qiu J (2021) N, P co-doped hierarchical porous carbon from rapeseed cake with enhanced supercapacitance. Renewable Energy 170:188–196

    Article  CAS  Google Scholar 

  94. Zhao G, Li Y, Zhu G, Shi J, Lu T, Pan L (2019) Waste fruit grain orange–derived 3D hierarchically porous carbon for high-performance all-solid-state supercapacitor. Ionics 25:3935–3944

    Article  CAS  Google Scholar 

  95. Senthil RA, Yang V, Pan J, Sun Y (2021) A green and economical approach to derive biomass porous carbon from freely available feather finger grass flower for advanced symmetric supercapacitors. J Energy Storage 35:102287

    Article  Google Scholar 

  96. Fang C, Hu P, Dong S, Cheng Y, Zhang D, Zhang X (2021) Construction of carbon nanorods supported hydrothermal carbon and carbon fiber from waste biomass straw for high strength supercapacitor. J Colloid Interface Sci 582:552–560

    Article  CAS  PubMed  Google Scholar 

  97. Mangisetti SR, Kamaraj M, Sundara R (2021) Large-scale single-step synthesis of wrinkled N-S doped 3D graphene like nanosheets from Tender palm shoots for high energy density supercapacitors. Int J Hydrogen Energy 46:403–415

    Article  CAS  Google Scholar 

  98. Liang X, Liu R, Wu X (2021) Biomass waste derived functionalized hierarchical porous carbon with high gravimetric and volumetric capacitances for supercapacitors. Microporous Mesoporous Mater 310:110659

    Article  CAS  Google Scholar 

  99. Shang M, Zhang J, Liu X, Liu Y, Guo S, Yu S, Filatov S, Yi X (2021) N, S self-doped hollow-sphere porous carbon derived from puffball spores for high performance supercapacitors. Appl Surf Sci 542:148697

    Article  CAS  Google Scholar 

  100. Nguyen NT, Le PA, Phung VBT (2021) Biomass-derived carbon hooks on Ni foam with free binder for high performance supercapacitor electrode. Chem Eng Sci 229:116053

    Article  CAS  Google Scholar 

  101. Baig MM, Gul IH (2021) Conversion of wheat husk to high surface area activated carbon for energy storage in high-performance supercapacitors. Biomass Bioenergy 144:105909

    Article  CAS  Google Scholar 

  102. Guan L, Pan L, Peng T, Gao C, Zhao W, Yang Z, Hu H, Wu M (2019) Synthesis of Biomass-Derived Nitrogen-Doped Porous Carbon Nanosheests for High-Performance Supercapacitors. ACS Sustain Chem Eng 7:8405–8412

    Article  CAS  Google Scholar 

  103. Yang H, Zhou J, Wang M, Wu S, Yang W, Wang H (2020) From basil seed to flexible supercapacitors: Green synthesis of heteroatom-enriched porous carbon by self-gelation strategy. Int J Energy Res 44:4449–4463

    Article  CAS  Google Scholar 

  104. Yu M, Han Y, Li J, Wang L (2017) CO 2 -activated porous carbon derived from cattail biomass for removal of malachite green dye and application as supercapacitors. Chem Eng J 317:493–502

    Article  CAS  Google Scholar 

  105. Cheng B-H, Tian K, Zeng RJ, Jiang H (2017) Preparation of high performance supercapacitor materials by fast pyrolysis of corn gluten meal waste. Sustain Energy Fuels 1:891–898

    Article  CAS  Google Scholar 

  106. Ji H, Zhao X, Qiao Z, Jung J, Zhu Y, Lu Y, Zhang LL, MacDonald AH, Ruoff RS (2014) Capacitance of carbon-based electrical double-layer capacitors. Nat Commun 5:3317

    Article  PubMed  CAS  Google Scholar 

  107. Bi S, Banda H, Chen M, Niu L, Chen M, Wu T, Wang J, Wang R, Feng J, Chen T et al (2020) Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes. Nat Mater 19:552–558

    Article  CAS  PubMed  Google Scholar 

  108. Selvaraj AR, Muthusamy A, Inho C, Kim H-J, Senthil K, Prabakar K (2021) Ultrahigh surface area biomass derived 3D hierarchical porous carbon nanosheet electrodes for high energy density supercapacitors. Carbon 174:463–474

    Article  CAS  Google Scholar 

  109. Chen Q, Tan X, Liu Y, Liu S, Li M, Gu Y, Zhang P, Ye S, Yang Z, Yang Y (2020) Biomass-derived porous graphitic carbon materials for energy and environmental applications. J Mater Chem A 8:5773–5811

    Article  CAS  Google Scholar 

  110. Barbieri O, Hahn M, Herzog A, Kötz R (2005) Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon 43:1303–1310

    Article  CAS  Google Scholar 

  111. Breitsprecher K, Janssen M, Srimuk P, Mehdi BL, Presser V, Holm C, Kondrat S (2020) How to speed up ion transport in nanopores. Nat Commun 11:6085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yang P, **e J, Zhong C (2018) Biowaste-Derived Three-Dimensional Porous Network Carbon and Bioseparator for High-Performance Asymmetric Supercapacitor. ACS Appl Energy Mater 1:616–622

    Article  CAS  Google Scholar 

  113. Adan-Mas A, Alcaraz L, Arevalo-Cid P, Lopez-Gomez FA, Montemor F (2021) Coffee-derived activated carbon from second biowaste for supercapacitor applications. Waste Manag 120:280–289

    Article  CAS  PubMed  Google Scholar 

  114. Luo X, Yang Q, Dong Y, Huang X, Kong D, Wang B, Liu H, **ao Z, Zhi L (2020) Maximizing pore and heteroatom utilization within N, P-co-doped polypyrrole-derived carbon nanotubes for high-performance supercapacitors. J Mater Chem A 8:17558–17567

    Article  CAS  Google Scholar 

  115. McCrory CC, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF (2015) Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc 137:4347–4357

    Article  CAS  PubMed  Google Scholar 

  116. Borchardt L, Leistenschneider D, Haase J, Dvoyashkin M (2018) Revising the Concept of Pore Hierarchy for Ionic Transport in Carbon Materials for Supercapacitors. Adv Energy Mater 8:1800892

    Article  CAS  Google Scholar 

  117. Deng J, Li J, Song S, Zhou Y, Li L (2020) Electrolyte-Dependent Supercapacitor Performance on Nitrogen-Doped Porous Bio-Carbon from Gelatin. Nanomater (Basel) 10

  118. Wen Z, Wang X, Mao S, Bo Z, Kim H, Cui S, Lu G, Feng X, Chen J (2012) Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor. Adv Mater 24:5610–5616

    Article  CAS  PubMed  Google Scholar 

  119. Deng J, **ong T, Xu F, Li M, Han C, Gong Y, Wang H, Wang Y (2015) Inspired by bread leavening: one-pot synthesis of hierarchically porous carbon for supercapacitors. Green Chem 17:4053–4060

    Article  CAS  Google Scholar 

  120. Kim CH, Yang C-M, Kim YA, Yang KS (2019) Pore engineering of nanoporous carbon nanofibers toward enhanced supercapacitor performance. Appl Surf Sci 497:143693

    Article  CAS  Google Scholar 

  121. Liu H-J, Wang J, Wang C-X, **a Y-Y (2011) Ordered Hierarchical Mesoporous/Microporous Carbon Derived from Mesoporous Titanium-Carbide/Carbon Composites and its Electrochemical Performance in Supercapacitor. Adv Energy Mater 1:1101–1108

    Article  CAS  Google Scholar 

  122. Cheng Q, **a Y, Pavlinek V, Yan Y, Li C, Saha P (2012) Effects of macropore size on structural and electrochemical properties of hierarchical porous carbons. J Mater Sci 47:6444–6450

    Article  CAS  Google Scholar 

  123. Lei Z, Liu L, Zhao H, Liang F, Chang S, Li L, Zhang Y, Lin Z, Kroger J, Lei Y (2020) Nanoelectrode design from microminiaturized honeycomb monolith with ultrathin and stiff nanoscaffold for high-energy micro-supercapacitors. Nat Commun 11:299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Huang J, Sumpter BG, Meunier V (2008) Theoretical model for nanoporous carbon supercapacitors. Angew Chem Int Ed Engl 47:520–524

    Article  CAS  PubMed  Google Scholar 

  125. Huang J, Sumpter BG, Meunier V (2008) A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chemistry 14:6614–6626

    Article  CAS  PubMed  Google Scholar 

  126. Boujibar O, Ghosh A, Achak O, Chafik T, Ghamouss F (2019) A high energy storage supercapacitor based on nanoporous activated carbon electrode made from Argan shells with excellent ion transport in aqueous and non-aqueous electrolytes. J Energy Storage 26:100958

    Article  Google Scholar 

  127. Redondo E, Carretero-González J, Goikolea E, Ségalini J, Mysyk R (2015) Effect of pore texture on performance of activated carbon supercapacitor electrodes derived from olive pits. Electrochim Acta 160:178–184

    Article  CAS  Google Scholar 

  128. Wang X, Salari M, Jiang D-e, Chapman Varela J, Anasori B, Wesolowski DJ, Dai S, Grinstaff MW, Gogotsi Y (2020) Electrode material–ionic liquid coupling for electrochemical energy storage. Nat Rev Mater 5:787–808

    Article  CAS  Google Scholar 

  129. Oukali G, Salager E, Ammar MR, Dutoit CE, Sarou-Kanian V, Simon P, Raymundo-Pinero E, Deschamps M (2019) In Situ Magnetic Resonance Imaging of a Complete Supercapacitor Giving Additional Insight on the Role of Nanopores. ACS Nano 13:12810–12815

    Article  CAS  PubMed  Google Scholar 

  130. Mo T, Bi S, Zhang Y, Presser V, Wang X, Gogotsi Y, Feng G (2020) Ion Structure Transition Enhances Charging Dynamics in Subnanometer Pores. ACS Nano 14:2395–2403

    Article  CAS  PubMed  Google Scholar 

  131. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanomete. Science 313:1760–1763

    Article  CAS  PubMed  Google Scholar 

  132. Zhou J, Lian J, Hou L, Zhang J, Gou H, **a M, Zhao Y, Strobel TA, Tao L, Gao F (2015) Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres. Nat Commun 6:8503

    Article  CAS  PubMed  Google Scholar 

  133. Lin R, Taberna PL, Chmiola J, Guay D, Gogotsi Y, Simon P (2009) Microelectrode Study of Pore Size, Ion Size, and Solvent Effects on the Charge/Discharge Behavior of Microporous Carbons for Electrical Double-Layer Capacitors. J Electrochem Soc 156:A7–A12

    Article  CAS  Google Scholar 

  134. Fuertes AB, Lota G, Centeno TA, Frackowiak E (2005) Templated mesoporous carbons for supercapacitor application. Electrochim Acta 50:2799–2805

    Article  CAS  Google Scholar 

  135. Chmiola J (2006) Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer. Science 313

  136. **ong G, He P, Lyu Z, Chen T, Huang B, Chen L, Fisher TS (2018) Bioinspired leaves-on-branchlet hybrid carbon nanostructure for supercapacitors. Nat Commun 9:790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Prehal C, Koczwara C, Jäckel N, Schreiber A, Burian M, Amenitsch H, Hartmann MA, Presser V, Paris O (2017) Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering. Nature Energy 2

  138. Jiang X, Guo F, Jia X, Zhan Y, Zhou H, Qian L (2020) Synthesis of nitrogen-doped hierarchical porous carbons from peanut shell as a promising electrode material for high-performance supercapacitors. J Energy Storage 30:101451

    Article  Google Scholar 

  139. Gang B, Zhang F, Li X, Zhai B, Wang X, Song Y (2021) A ulva lactuca-derived porous carbon for high-performance electrode materials in supercapacitor: Synergistic effect of porous structure and graphitization degree. J Energy Storage 33:102132

    Article  Google Scholar 

  140. Liu T, Liu E, Ding R, Luo Z, Hu T, Li Z (2015) Preparation and supercapacitive performance of clew-like porous nanocarbons derived from sucrose by catalytic graphitization. Electrochim Acta 173:50–58

    Article  CAS  Google Scholar 

  141. Chang B, Yin H, Zhang X, Zhang S, Yang B (2017) Chemical blowing strategy synthesis of nitrogen-rich porous graphitized carbon nanosheets: Morphology, pore structure and supercapacitor application. Chem Eng J 312:191–203

    Article  CAS  Google Scholar 

  142. Zhai D, Du H, Li B, Zhu Y, Kang F (2011) Porous graphitic carbons prepared by combining chemical activation with catalytic graphitization. Carbon 49:725–729

    Article  CAS  Google Scholar 

  143. Huang CH, Zhang Q, Chou TC, Chen CM, Su DS, Doong RA (2012) Three-dimensional hierarchically ordered porous carbons with partially graphitic nanostructures for electrochemical capacitive energy storage. Chemsuschem 5:563–571

    Article  CAS  PubMed  Google Scholar 

  144. Thompson E, Danks AE, Bourgeois L, Schnepp Z (2015) Iron-catalyzed graphitization of biomass. Green Chem 17:551–556

    Article  CAS  Google Scholar 

  145. Major I, Pin J-M, Behazin E, Rodriguez-Uribe A, Misra M, Mohanty A (2018) Graphitization of Miscanthus grass biocarbon enhanced by in situ generated FeCo nanoparticles. Green Chem 20:2269–2278

    Article  CAS  Google Scholar 

  146. Jäckel N, Rodner M, Schreiber A, Jeongwook J, Zeiger M, Aslan M, Weingarth D, Presser V (2016) Anomalous or regular capacitance? The influence of pore size dispersity on double-layer formation. J Power Sources 326:660–671

    Article  CAS  Google Scholar 

  147. Lin T, Chen I-W, Liu F, Yang C, Bi H, Xu F, Huang F (2015) Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350:1508–1513

    Article  CAS  PubMed  Google Scholar 

  148. Lu H, Li Q, Guo J, Song A, Gong C, Zhang J, Zhang J (2018) Hierarchically porous carbon with high-speed ion transport channels for high performance supercapacitors. Appl Surf Sci 427:992–999

    Article  CAS  Google Scholar 

  149. Lei W, Yang B, Sun Y, **ao L, Tang D, Chen K, Sun J, Ke J, Zhuang Y (2021) Self-sacrificial template synthesis of heteroatom doped porous biochar for enhanced electrochemical energy storage. J Power Sources 488:229455

    Article  CAS  Google Scholar 

  150. Niu H, Luo B, **n N, Liu Y, Shi W (2019) N-doped hollow carbon spheres intercalated graphene film induced macroporous frameworks for ultrahigh volumetric energy density supercapacitor. J Alloy Compd 785:374–381

    Article  CAS  Google Scholar 

  151. Ma X-Q, Shan Y-Q, Wang M-Y, Alothman ZA, Xu Z-X, Duan P-G, Zhou J, Luque R (2020) Mechanochemical Preparation of N, S-Doped Graphene Oxide Using (NH4)2SO4 for Supercapacitor Applications. ACS Sustain Chem Eng 8:18810–18815

    Article  CAS  Google Scholar 

  152. Zhou M, Pu F, Wang Z, Guan S (2014) Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors. Carbon 68:185–194

    Article  CAS  Google Scholar 

  153. Zhou M, Li X, Zhao H, Wang J, Zhao Y, Ge F, Cai Z (2018) Combined effect of nitrogen and oxygen heteroatoms and micropores of porous carbon frameworks from Schiff-base networks on their high supercapacitance. J Mater Chem A 6:1621–1629

    Article  CAS  Google Scholar 

  154. Dai Z, Ren P-G, ** Y-L, Zhang H, Ren F, Zhang Q (2019) Nitrogen-sulphur Co-doped graphenes modified electrospun lignin/polyacrylonitrile-based carbon nanofiber as high performance supercapacitor. J Power Sources 437:226937

    Article  CAS  Google Scholar 

  155. Liu S, Cai Y, Zhao X, Liang Y, Zheng M, Hu H, Dong H, Jiang S, Liu Y, **ao Y (2017) Sulfur-doped nanoporous carbon spheres with ultrahigh specific surface area and high electrochemical activity for supercapacitor. J Power Sources 360:373–382

    Article  CAS  Google Scholar 

  156. Denis PA (2010) Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur. Chem Phys Lett 492:251–257

    Article  CAS  Google Scholar 

  157. Kakaei K, Hamidi M, Husseindoost S (2016) Chlorine-doped reduced graphene oxide nanosheets as an efficient and stable electrode for supercapacitor in acidic medium. J Colloid Interface Sci 479:121–126

    Article  CAS  PubMed  Google Scholar 

  158. Arvas MB, Gürsu H, Gencten M, Sahin Y (2021) Preparation of different heteroatom doped graphene oxide based electrodes by electrochemical method and their supercapacitor applications. J Energy Storage 35:102328

    Article  Google Scholar 

  159. Matsagar BM, Yang R-X, Dutta S, Ok YS, Wu KCW (2021) Recent progress in the development of biomass-derived nitrogen-doped porous carbon. J Mater Chem A 9:3703–3728

    Article  CAS  Google Scholar 

  160. Lu Z, Chen J, Wang W, Li W, Sun M, Wang Y, Wang X, Ye J, Rao H (2021) Electrocatalytic, Kinetic, and Mechanism Insights into the Oxygen-Reduction Catalyzed Based on the Biomass-Derived FeOx @N-Doped Porous Carbon Composites. Small e2007326

  161. Chen D, Yang L, Li J, Wu Q (2019) Effect of Self-Doped Heteroatoms in Biomass-Derived Activated Carbon for Supercapacitor Applications. ChemistrySelect 4:1586–1595

    Article  CAS  Google Scholar 

  162. Niu J, Shao R, Liu M, Zan Y, Dou M, Liu J, Zhang Z, Huang Ya, Wang F (2019) Porous Carbons Derived from Collagen-Enriched Biomass: Tailored Design, Synthesis, and Application in Electrochemical Energy Storage and Conversion. Adv Funct Mater 29:1905095

    Article  CAS  Google Scholar 

  163. Santos WF, Quattrone M, John VM, Angulo SC (2017) Roughness, wettability and water absorption of water repellent treated recycled aggregates. Constr Build Mater 146:502–513

    Article  Google Scholar 

  164. Mauffré T, McGregor F, Contraires E, Fabbri A (2019) Influence of walls surface topography on water droplet dam** and absorption for earthen constructions. Build Environ 166:106395

    Article  Google Scholar 

  165. Zhang J, Hong S, Dong B, Tang L, Lin C, Liu Z, **ng F (2019) Water distribution modelling of capillary absorption in cementitious materials. Constr Build Mater 216:468–475

    Article  CAS  Google Scholar 

  166. Soury E, Behravesh AH, Jam NJ, Haghtalab A (2011) An experimental investigation on surface quality and water absorption of extruded wood–plastic composite. J Thermoplast Compos Mater 26:680–698

    Article  CAS  Google Scholar 

  167. Li J, Jiang Q, Wei L, Zhong L, Wang X (2020) Simple and scalable synthesis of hierarchical porous carbon derived from cornstalk without pith for high capacitance and energy density. J Mater Chem A 8:1469–1479

    Article  CAS  Google Scholar 

  168. Son Y-R, Park S-J (2019) Effect of graphene oxide/carbon nanotube ratio on electrochemical behaviors of spongy bone-like reduced graphene oxide/carbon nanotube foam prepared by simple and green approach. Chem Eng J 373:1020–1029

    Article  CAS  Google Scholar 

  169. Wan L, Hu J, Liu J, **e M, Zhang Y, Chen J, Du C, Tian Z (2021) Heteroatom-doped porous carbons derived from lotus pollen for supercapacitors: Comparison of three activators. J Alloys Compd 859:158390

    Article  CAS  Google Scholar 

  170. Wu F, Gao J, Zhai X, **e M, Sun Y, Kang H, Tian Q, Qiu H (2019) Hierarchical porous carbon microrods derived from albizia flowers for high performance supercapacitors. Carbon 147:242–251

    Article  CAS  Google Scholar 

  171. Tan H, Wang X, Jia D, Hao P, Sang Y, Liu H (2017) Structure-dependent electrode properties of hollow carbon micro-fibers derived from Platanus fruit and willow catkins for high-performance supercapacitors. J Mater Chem A 5:2580–2591

    Article  CAS  Google Scholar 

  172. Li J, Wei L, Jiang Q, Liu C, Zhong L, Wang X (2020) Salt-template assisted synthesis of cornstalk derived hierarchical porous carbon with excellent supercapacitance. Ind Crops Prod 154:112666

    Article  CAS  Google Scholar 

  173. Okonkwo CA, Menkiti MC, Obiora-Okafo IA, Ezenwa ON (2021) Controlled pyrolysis of sugarcane bagasse enhanced mesoporous carbon for improving capacitance of supercapacitor electrode. Biomass Bioenergy 146:105996

    Article  CAS  Google Scholar 

  174. Okonkwo CA, Li G, Li Y, Lv T, Jia L, Okoye CC, Oba SN (2021) Liquid nitrogen-controlled direct pyrolysis/KOH activation mediated micro-mesoporous carbon synthesis from castor shell for enhanced performance of supercapacitor electrode. Biomass Convers Biorefinery

  175. Xue C, Feng L, Hao Y, Yang F, Zhang Q, Ma X, Hao X (2018) Acid-free synthesis of oxygen-enriched electroactive carbon with unique square pores from salted seaweed for robust supercapacitor with attractive energy density. Green Chem 20:4983–4994

    Article  CAS  Google Scholar 

  176. Cao J, Zhu C, Aoki Y, Habazaki H (2018) Starch-Derived Hierarchical Porous Carbon with Controlled Porosity for High Performance Supercapacitors. ACS Sustain Chem Eng 6:7292–7303

    Article  CAS  Google Scholar 

  177. Gopalakrishnan A, Yang D, Ince JC, Truong YB, Yu A, Badhulika S (2019) Facile one-pot synthesis of hollow NiCoP nanospheres via thermal decomposition technique and its free-standing carbon composite for supercapacitor application. J Energy Storage 25:100893

    Article  Google Scholar 

  178. Gopalakrishnan A, Sahatiya P, Badhulika S (2018) Template-Assisted Electrospinning of Bubbled Carbon Nanofibers as Binder-Free Electrodes for High-Performance Supercapacitors. ChemElectroChem 5:531–539

    Article  CAS  Google Scholar 

  179. Kang Z, Li Y, Yu Y, Liao Q, Zhang Z, Guo H, Zhang S, Wu J, Si H, Zhang X, Zhang Y (2018) Facile synthesis of NiCo2S4 nanowire arrays on 3D graphene foam for high-performance electrochemical capacitors application. J Mater Sci 53:10292–10301

    Article  CAS  Google Scholar 

  180. Mai LQ, Minhas-Khan A, Tian X, Hercule KM, Zhao YL, Lin X, Xu X (2013) Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance. Nat Commun 4:2923

    Article  PubMed  CAS  Google Scholar 

  181. Tian K, Wang J, Cao L, Yang W, Guo W, Liu S, Li W, Wang F, Li X, Xu Z et al (2020) Single-site pyrrolic-nitrogen-doped sp(2)-hybridized carbon materials and their pseudocapacitance. Nat Commun 11:3884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Du J, Zhang Y, Lv H, Hou S, Chen A (2021) Yeasts-derived nitrogen-doped porous carbon microcapsule prepared by silica-confined activation for supercapacitor. J Colloid Interface Sci 601:467–473

    Article  CAS  PubMed  Google Scholar 

  183. Phiri J, Dou J, Vuorinen T, Gane PAC, Maloney TC (2019) Highly Porous Willow Wood-Derived Activated Carbon for High-Performance Supercapacitor Electrodes. ACS Omega 4:18108–18117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Li D, Chang G, Zong L, Xue P, Wang Y, **a Y, Lai C, Yang D (2019) From double-helix structured seaweed to S-doped carbon aerogel with ultra-high surface area for energy storage. Energy Storage Mater 17:22–30

    Article  CAS  Google Scholar 

  185. Zhou J, Xu L, Li L, Li X (2019) Polytetrafluoroethylene-assisted N/F co-doped hierarchically porous carbon as a high performance electrode for supercapacitors. J Colloid Interface Sci 545:25–34

    Article  CAS  PubMed  Google Scholar 

  186. Peng C, Zeng T, Yu Y, Li Z, Kuai Z, Zhao W (2018) Fluorine and oxygen co-doped porous carbons derived from third-class red dates for high-performance symmetrical supercapacitors. J Mater Sci: Mater Electron 29:18674–18683

    CAS  Google Scholar 

  187. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  PubMed  Google Scholar 

  188. Liu S, Wei L, Wang H (2020) Review on reliability of supercapacitors in energy storage applications. Appl Energy 278:115436

    Article  CAS  Google Scholar 

  189. Jain D, Kanungo J, Tripathi SK (2020) Enhancement in performance of supercapacitor using eucalyptus leaves derived activated carbon electrode with CH3COONa and HQ electrolytes: A step towards environment benign supercapacitor. J Alloys Compd 832:154956

    Article  CAS  Google Scholar 

  190. Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44:7484–7539

    Article  CAS  PubMed  Google Scholar 

  191. Horstmann B, Shi J, Amine R, Werres M, He X, Jia H, Hausen F, Cekic-Laskovic I, Wiemers-Meyer S, Lopez J, et al (2021) Strategies towards enabling lithium metal in batteries: interphases and electrodes. Energy Environ Sci

  192. Jiménez-Cordero D, Heras F, Gilarranz MA, Raymundo-Piñero E (2014) Grape seed carbons for studying the influence of texture on supercapacitor behaviour in aqueous electrolytes. Carbon 71:127–138

    Article  CAS  Google Scholar 

  193. Li C, Wu W, Wang P, Zhou W, Wang J, Chen Y, Fu L, Zhu Y, Wu Y, Huang W (2019) Fabricating an Aqueous Symmetric Supercapacitor with a Stable High Working Voltage of 2 V by Using an Alkaline-Acidic Electrolyte. Adv Sci (Weinh) 6:1801665

    Article  CAS  Google Scholar 

  194. Li HB, Yu MH, Wang FX, Liu P, Liang Y, **ao J, Wang CX, Tong YX, Yang GW (1894) Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat Commun 2013:4

    Google Scholar 

  195. Merlet C, Pean C, Rotenberg B, Madden PA, Daffos B, Taberna PL, Simon P, Salanne M (2013) Highly confined ions store charge more efficiently in supercapacitors. Nat Commun 4:2701

    Article  CAS  PubMed  Google Scholar 

  196. Cheng F, Yang X, Zhang S, Lu W (2020) Boosting the supercapacitor performances of activated carbon with carbon nanomaterials. J Power Sources 450:227678

    Article  CAS  Google Scholar 

  197. Deschamps M, Gilbert E, Azais P, Raymundo-Pinero E, Ammar MR, Simon P, Massiot D, Beguin F (2013) Exploring electrolyte organization in supercapacitor electrodes with solid-state NMR. Nat Mater 12:351–358

    Article  CAS  PubMed  Google Scholar 

  198. Griffin JM, Forse AC, Tsai WY, Taberna PL, Simon P, Grey CP (2015) In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. Nat Mater 14:812–819

    Article  CAS  PubMed  Google Scholar 

  199. Shen X, Sun T, Yang L, Krasnoslobodtsev A, Sabirianov R, Sealy M, Mei WN, Wu Z, Tan L (2021) Ultra-fast charging in aluminum-ion batteries: electric double layers on active anode. Nat Commun 12:820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Luo ZX, **ng YZ, Ling YC, Kleinhammes A, Wu Y (2015) Electroneutrality breakdown and specific ion effects in nanoconfined aqueous electrolytes observed by NMR. Nat Commun 6:6358

    Article  CAS  PubMed  Google Scholar 

  201. Yu H, Wu J, Fan L, Hao S, Lin J, Huang M (2014) An efficient redox-mediated organic electrolyte for high-energy supercapacitor. J Power Sources 248:1123–1126

    Article  CAS  Google Scholar 

  202. Peng X, Liu H, Yin Q, Wu J, Chen P, Zhang G, Liu G, Wu C, **e Y (2016) A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nat Commun 7:11782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Chen Z, Wang X, Xue B, Li W, Ding Z, Yang X, Qiu J, Wang Z (2020) Rice husk-based hierarchical porous carbon for high performance supercapacitors: The structure-performance relationship. Carbon 161:432–444

    Article  CAS  Google Scholar 

  204. Jang H, Park YH, Kim M-H, You J, Ko J-H, Lee JT (2021) Surface characteristics of porous carbon derived from genetically designed transgenic hybrid poplar for electric double-layer capacitors. Appl Surf Sci 545:148978

    Article  CAS  Google Scholar 

  205. Zheng H, Cao Q, Zhu M, Xu D, Guo H, Li Y, Zhou J (2021) Biomass-based flexible nanoscale carbon fibers: effects of chemical structure on energy storage properties. J Mater Chem A 9:10120–10134

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Summarize and write: Yu Lin.

Check: Fangfang Li; Gang Liu; Chunfeng Xue.

Technical support: Qian Zhang.

Meanwhile, thanks very much for the helps and supports of the following person:

Yueyue Wei; Teng Wu; Kai Lv; Wei Zhao; Lifeng Wang; Jianqiang Du; **aoqing Li.

Corresponding authors

Correspondence to Gang Liu or Chunfeng Xue.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Li, F., Zhang, Q. et al. Controllable preparation of green biochar based high-performance supercapacitors. Ionics 28, 2525–2561 (2022). https://doi.org/10.1007/s11581-022-04557-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04557-9

Keywords

Navigation