Log in

Thickness dependence of high volumetric energy density lithium ion battery based on Sn–Zn eutectic alloy foil anode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium ion batteries (LIBs) with high volumetric energy density and intrinsic safety features are highly desirable for portable electronics. Herein, we report a Sn–Zn eutectic alloy foil as the additives and current collector free anode. The alloy’s superior plastic formation ability enables the easy production of foil anode. The foil exhibits high Zn–Sn interface densities and fine grain boundaries, which act as fast lithium ion diffusion sites, leading to its high volumetric specific capacity. The foil with the thinnest thickness shows a better volumetric specific capacity, whereas the foil with the thickest thickness maintains the best electrochemical–mechanical toleration due to the weakened lithiation driving force by its tougher mechanics. The LIB full-cell demonstrates strong thickness-dependent performances. This study gives insights into the engineered thickness issue for the alloy foil anode based LIBs and provides a direction guide towards low costs, high volumetric energy density, and intrinsic safety LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu F, Maier J, Yu Y (2020) Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem Soc Rev 49:1569–1614

    Article  CAS  Google Scholar 

  2. **e Q, Zhang Y, **e D, Zhao P (2020) EDTA-Fe(III) sodium complex–derived bubble-like nitrogen-enriched highly graphitic carbon nanospheres as anodes with high specific capacity for lithium-ion batteries. Ionics 26:85–94

    Article  CAS  Google Scholar 

  3. **e Q, Qu S, Zhao P (2021) A facile fabrication of micro/nano-sized silicon/carbon composite with a honeycomb structure as high-stability anodes for lithium-ion batteries. J Electroanal Chem 884:115074

    Article  CAS  Google Scholar 

  4. **e Q, Qu S, Zhang Y, Zhao P (2021) Nitrogen-enriched graphene-like carbon architecture with tunable porosity derived from coffee ground as high performance anodes for lithium ion batteries. Appl Surf Sci 537:148092

    Article  CAS  Google Scholar 

  5. Duan J, Tang X, Dai H, Yang Y, Wu W, Wei X, Huang Y (2020) Building safe lithium-ion batteries for electric vehicles: a review. Electrochemical Energy Rev 3:1–42

    Article  CAS  Google Scholar 

  6. Schmuch R, Wagner R, Hörpel G, Placke T, Winter M (2018) Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat Energy 3:267–278

    Article  CAS  Google Scholar 

  7. Wang Z, Liu J, Wang M, Shen X, Qian T, Yan C (2020) Toward safer solid-state lithium metal batteries: a review. Nanoscale Advances 2:1828–1836

    Article  CAS  Google Scholar 

  8. Xu L, Lu Y, Zhao C-Z, Yuan H, Zhu G-L, Hou L-P, Zhang Q, Huang J-Q (2021) Toward the scale-up of solid-state lithium metal batteries: the gaps between lab-level cells and practical large-format batteries. Adv Energy Mater 11:2002360

    Article  CAS  Google Scholar 

  9. Heligman BT, Manthiram A (2021) Elemental foil anodes for lithium-ion batteries. ACS Energy Lett 6:2666–2672

    Article  CAS  Google Scholar 

  10. Boles ST, Tahmasebi MH (2020) Are foils the future of anodes? Joule 4:1342–1346

    Article  Google Scholar 

  11. Xu H, Li S, Chen X, Zhang C, Liu W, Fan H, Yu Y, Huang Y, Li J (2019) Sn-alloy foil electrode with mechanical prelithiation: full-cell performance up to 200 cycles. Adv Energy Mater 9:1902150

    Article  CAS  Google Scholar 

  12. Kim C, Kim H, Sadan MK, Jeon M, Cho G, Ahn J, Kim K, Cho K, Ahn H (2021) Development and evaluation of Sn foil anode for sodium-ion batteries. Small n/a: 2102618

  13. Wang H, Tan H, Luo X, Wang H, Ma T, Lv M, Song X, ** S, Chang X, Li X (2020) The progress on aluminum-based anode materials for lithium-ion batteries. J Mater Chem A 8:25649–25662

    Article  CAS  Google Scholar 

  14. **e Q, Zhang Y, **e D, Zhao P (2020) Nitrogen-enriched graphitic carbon encapsulated Fe3O4/Fe3C/Fe composite derived from EDTA-Fe(III) sodium complex as libs anodes with boosted performance. J Electroanal Chem 857:113749

    Article  CAS  Google Scholar 

  15. Li J-X, **e Q, Zhao P, Li C (2020) EDTA-Co(II) sodium complex derived Co(OH)2/Co3O4/Co nanoparticles embedded in nitrogen-enriched graphitic porous carbon as lithium-ion battery anode with superior cycling stability. Appl Surf Sci 504:144515

    Article  CAS  Google Scholar 

  16. Li H, Yamaguchi T, Matsumoto S, Hoshikawa H, Kumagai T, Okamoto NL, Ichitsubo T (2020) Circumventing huge volume strain in alloy anodes of lithium batteries. Nat Commun 11:1584

    Article  Google Scholar 

  17. Fan H, Li S, Yu Y, Xu H, Jiang M, Huang Y, Li J (2021) Air-stable lixal foil as free-standing electrode with improved electrochemical ductility by shot-peening treatment. Adv Funct Mater 31:2100978

    Article  CAS  Google Scholar 

  18. Yu Y, Li S, Fan H, Xu H, Jiang M, Huang Y, Li J (2020) Optimal annealing of al foil anode for prelithiation and full-cell cycling in Li-ion battery: the role of grain boundaries in lithiation/delithiation ductility. Nano Energy 67:104274

    Article  CAS  Google Scholar 

  19. Fan H, Chen B, Li S, Yu Y, Xu H, Jiang M, Huang Y, Li J (2020) Nanocrystalline Li–Al–Mn–Si foil as reversible Li host: electronic percolation and electrochemical cycling stability. Nano Lett 20:896–904

    Article  CAS  Google Scholar 

  20. Heligman BT, Kreder KJ, Manthiram A (2019) Zn-Sn interdigitated eutectic alloy anodes with high volumetric capacity for lithium-ion batteries. Joule 3:1051–1063

    Article  CAS  Google Scholar 

  21. Wan M, Kang S, Wang L, Lee H-W, Zheng GW, Cui Y, Sun Y (2020) Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nat Commun 11:829

    Article  CAS  Google Scholar 

  22. Xu H, Li S, Zhang C, Chen X, Liu W, Zheng Y, **e Y, Huang Y, Li J (2019) Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries. Energy Environ Sci 12:2991–3000

    Article  CAS  Google Scholar 

  23. Jiang M, Yu Y, Fan H, Xu H, Zheng Y, Huang Y, Li S, Li J (2019) Full-cell cycling of a self-supporting aluminum foil anode with a phosphate conversion coating. ACS Appl Mat Interfaces 11:15656–15661

    Article  CAS  Google Scholar 

  24. Tu S, Ai X, Wang X, Gui S, Cai Z, Zhan R, Tan Y, Liu W, Yang H, Li C, Sun Y (2021) Circumventing chemo-mechanical failure of Sn foil battery anode by grain refinement and elaborate porosity design. J Energy Chem 62:477–484

    Article  Google Scholar 

  25. Kreder KJ, Heligman BT, Manthiram A (2017) Interdigitated eutectic alloy foil anodes for rechargeable batteries. ACS Energy Lett 2:2422–2423

    Article  CAS  Google Scholar 

  26. Li H, Tao Y, Zhang C, Liu D, Luo J, Fan W, Xu Y, Li Y, You C, Pan Z-Z, Ye M, Chen Z, Dong Z, Wang D-W, Kang F, Lu J, Yang Q-H (2018) Dense graphene monolith for high volumetric energy density Li–S batteries. Adv Energy Mater 8:1703438

    Article  Google Scholar 

  27. Chen F, Han J, Kong D, Yuan Y, **ao J, Wu S, Tang D-M, Deng Y, Lv W, Lu J, Kang F, Yang Q-H (2021) 1000 Wh L−1 lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes. Nat Sci Rev 8(9). https://doi.org/10.1093/nsr/nwab012

  28. Son IH, Hwan Park J, Kwon S, Park S, Rümmeli MH, Bachmatiuk A, Song HJ, Ku J, Choi JW, Choi J-m, Doo S-G, Chang H (2015) Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nat Commun 6:7393

    Article  CAS  Google Scholar 

  29. Park S-H, King PJ, Tian R, Boland CS, Coelho J, Zhang C, McBean P, McEvoy N, Kremer MP, Daly D, Coleman JN, Nicolosi V (2019) High areal capacity battery electrodes enabled by segregated nanotube networks. Nat Energy 4:560–567

    Article  CAS  Google Scholar 

Download references

Funding

The authors received financial support from the Jian-Hua Research Foundation of Hebei University of Technology (No. HB1921); the Natural Science Foundation of Tian** City, China (No. 19JCYBJC17900); and the Natural Science Foundation of Hebei Province, China (No. E2021202075).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Qu or Gongkai Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 88 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Gong, Y., Xu, C. et al. Thickness dependence of high volumetric energy density lithium ion battery based on Sn–Zn eutectic alloy foil anode. Ionics 28, 2685–2692 (2022). https://doi.org/10.1007/s11581-022-04550-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04550-2

Keywords

Navigation