Log in

A one-step deposition method to prepare separators with carbon soot loading for lithium-sulfur battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Carbon materials are widely used in the modification of lithium-sulfur (Li–S) battery separators. They are generally loaded on the separators by coating and filtration methods, which spend much time and additives. Herein, a one-step deposition method was designed to prepare separators with carbon soot (CS) loading simply and rapidly. The CS-loaded separators could provide a conductive network and enhance electrolyte wettability, and also make the electrochemical redox reactions faster. As a result, the battery could reach an improved specific capacity of 901.3 and 754.1 mAh/g at 0.2C and 1C with low carbon loading and remain 522.1 and 536.8 mAh/g after 100 cycles, respectively, with a capacity retention of 57.9% and 71.2%. This strategy provides a simple and efficient strategy to prepare separators for Li–S batteries and has potential application value in industrial production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. LiN Z, Liu Z, Fu W et al (2013) Lithium polysulfidophosphates: a family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries [J]. Angew Chem Int Ed Engl 52(29):7460–7463

    Article  CAS  Google Scholar 

  2. Osada N, Bucur CB, Aso H et al (2016) The design of nanostructured sulfur cathodes using layer by layer assembly [J]. Energy Environ Sci 9(5):1668–1673

    Article  CAS  Google Scholar 

  3. Zheng D, Zhang X, Wang J et al (2016) Reduction mechanism of sulfur in lithium–sulfur battery: from elemental sulfur to polysulfide [J]. J Power Sources 301:312–316

    Article  CAS  Google Scholar 

  4. Cheon SE, Choi SS, Han JS, Choi YS, Jung BH, Lim HS (2004) Capacity fading mechanisms on cycling a high-capacity secondary sulfur cathode [J]. J Electrochem Soc, 151(12): A2067-A73

  5. Karthikeyan Kumaresan YM, Ralph E. White (2008) A mathematical model for a lithium–sulfur cell [J]. J Electrochem Soc, 155(8): A576-A82

  6. Tobishima Shin-Ichi, Matsuda Hideo Yamamoto Minoru (1997) Study on the reduction species of sulfur by alkali metals in nonaqueous solvents [J]. Electrochim Acta 42(6):1019–29

    Article  CAS  Google Scholar 

  7. Zhao H, Deng N, Yan J et al (2018) A review on anode for lithium-sulfur batteries: progress and prospects [J]. Chem Eng J 347:343–365

    Article  CAS  Google Scholar 

  8. Yao YX, Zhang XQ, Li BQ et al (2019) A compact inorganic layer for robust anode protection in lithium-sulfur batteries [J]. InfoMat 2(2):379–388

    Article  Google Scholar 

  9. Li Z, Wu HB, Lou XW (2016) Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium–sulfur batteries [J]. Energy Environ Sci 9(10):3061–3070

    Article  CAS  Google Scholar 

  10. Liang X, Wen Z, Liu Y et al (2011) Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte [J]. J Power Sources 196(22):9839–9843

    Article  CAS  Google Scholar 

  11. Bai S, Liu X, Zhu K, et al. (2016) Metal–organic framework-based separator for lithium–sulfur batteries [J]. Nat Energy, 1(7)

  12. Li S, Zhang W, Zheng J, et al. (2020) Inhibition of polysulfide shuttles in Li–S batteries: modified separators and solid‐state electrolytes [J]. Adv Energy Mater, 11(2)

  13. Xu J, An S, Song X, et al. (2021) Towards high performance Li-S batteries via sulfonate-rich COF-modified separator [J]. Adv Mater, e2105178

  14. Xu J, Tang W, Yang C et al (2021) A highly conductive COF@CNT electrocatalyst boosting polysulfide conversion for Li–S chemistry [J]. ACS Energy Lett 6(9):3053–3062

    Article  CAS  Google Scholar 

  15. Li J, **ao Z, Chen A et al (2020) Functionally modified polyolefin-based separators for lithium-sulfur batteries: progress and prospects [J]. Front Energy Res 8:593640

  16. **ang Y, Li J, Lei J et al (2016) Advanced separators for lithium-ion and lithium-sulfur batteries: a review of recent progress [J]. Chemsuschem 9(21):3023–3039

    Article  CAS  Google Scholar 

  17. Borchardt L, Oschatz M, Kaskel S (2016) Carbon materials for lithium sulfur batteries-ten critical questions [J]. Chemistry 22(22):7324–7351

    Article  CAS  Google Scholar 

  18. Yao H, Yan K, Li W et al (2014) Improved lithium–sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode–separator interface [J]. Energy Environ Sci 7(10):3381–3390

    Article  CAS  Google Scholar 

  19. Tang H, Yao S, Shen X et al (2017) Lithium-sulfur batteries with high rate and cycle performance by using multilayered separators coated with Ketjen Black [J]. Energ Technol 5(4):623–628

    Article  CAS  Google Scholar 

  20. Guo Y (2017) Separators with Active-carbon coating for advanced lithium– sulfur batteries [J]. International Journal of Electrochemical Science, 10850–62

  21. Zhou G, Li L, Wang DW et al (2015) A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries [J]. Adv Mater 27(4):641–647

    Article  CAS  Google Scholar 

  22. Li P, Deng J, Li J et al (2019) Hollow graphene spheres coated separator as an efficient trap for soluble polysulfides in Li S battery [J]. Ceram Int 45(10):13219–13224

    Article  CAS  Google Scholar 

  23. Jia-Qi Huang T-Z Z, Qiang Zhang, Hong-Jie Peng, Cheng-Meng Chen, And Fei Wei (2015) Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium sulfur batteries [J]. ACS Nano

  24. Liu B, Wu X, Wang S et al (2017) Flexible carbon nanotube modified separator for high-performance lithium-sulfur batteries [J]. Nanomaterials (Basel) 7(8):196

  25. Fu A, Wang C, Pei F et al (2019) Recent advances in hollow porous carbon materials for lithium-sulfur batteries [J]. Small 15(10):e1804786

  26. Wang S, Liu X, Zou K et al (2020) Toward a practical Li-S battery enabled by synergistic confinement of a nitrogen-enriched porous carbon as a multifunctional interlayer and sulfur-host material [J]. J Electroanal Chem 858:113797

  27. Yang Y, Wang S, Zhang L et al (2019) CoS-interposed and Ketjen black-embedded carbon nanofiber framework as a separator modulation for high performance Li-S batteries [J]. Chem Eng J 369:77–86

    Article  CAS  Google Scholar 

  28. Xu Q, Hu GC, Bi HL et al (2014) A trilayer carbon nanotube/Al2O3/polypropylene separator for lithium-sulfur batteries [J]. Ionics 21(4):981–986

    Article  Google Scholar 

  29. Liu Y, Chen M, Su Z et al (2021) Direct trap** and rapid conversing of polysulfides via a multifunctional Nb2O5-CNT catalytic layer for high performance lithium-sulfur batteries [J]. Carbon 172:260–271

    Article  CAS  Google Scholar 

  30. Arduini F, Cinti S, Mazzaracchio V et al (2020) Carbon black as an outstanding and affordable nanomaterial for electrochemical (bio)sensor design [J]. Biosens Bioelectron 156:112033

    Article  CAS  Google Scholar 

  31. Zhu J, Ge Y, Kim D et al (2016) A novel separator coated by carbon for achieving exceptional high performance lithium-sulfur batteries [J]. Nano Energy 20:176–184

    Article  CAS  Google Scholar 

  32. Deng X, Mammen L, Butt HJ et al (2012) Candle soot as a template for a transparent robust superamphiphobic coating [J]. Science 335(6064):67–70

    Article  CAS  Google Scholar 

  33. Pathak AD, Sharma CS (2021) Candle soot carbon cathode for rechargeable Li-CO2-Mars battery chemistry for Mars exploration: a feasibility study [J]. Mater Lett 283:128868

  34. Thomson M, Mitra T (2018) A radical approach to soot formation [J]. Science 361(6406):978–979

    Article  CAS  Google Scholar 

  35. Johansson KO, Head-Gordon MP, Schrader PE et al (2018) Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth [J]. Science 361(6406):997–1000

    Article  CAS  Google Scholar 

  36. Chen J, Yang B, LI H, et al. (2019) Candle soot: onion-like carbon, an advanced anode material for a potassium-ion hybrid capacitor [J]. J Mater Chem A, 7(15): 9247–52

  37. Zhu L, Jiang H, Yang Q, et al. (2019) An effective porous activated carbon derived from puffed corn employed as the separator coating in a lithium–sulfur battery [J]. Energy Technol, 7(11)

  38. Liu N, Huang B, Wang W et al (2016) Modified separator using thin carbon layer obtained from its cathode for advanced lithium sulfur batteries [J]. ACS Appl Mater Interfaces 8(25):16101–16107

    Article  CAS  Google Scholar 

  39. Huang J-Q, Zhuang T-Z, Zhang Q, Peng H-J, Chen C-M, Wei F (2015) Permselective graphene oxide membrane for highly stable and anti-self-discharge lithiumsulfur batteries [J]. ACS Nano 9(3):3002–3011

  40. Zhang Y, Miao L, Ning J et al (2015) A graphene-oxide-based thin coating on the separator: an efficient barrier towards high-stable lithium–sulfur batteries [J]. 2D Materials 2(2):024013

  41. Zhang K, Dai L, **e L et al (2019) Graphene/carbon black co-modified separator as polysulfides trapper for Li-S batteries [J]. Chemistry Select 4(20):6026–6034

    CAS  Google Scholar 

  42. Zhai PY, Peng HJ, Cheng XB et al. (2017) Scaled-up fabrication of porous-graphene-modified separators for high-capacity lithium–sulfur batteries [J]. Energy Storage Mater 7:56–63

    Article  Google Scholar 

  43. Vu DL, Lee JW (2018) A separator with activated carbon powder layer to enhance the performance of lithium-sulfur batteries [J]. J Korean Powder Metall Inst 25(6):466–474

    Article  Google Scholar 

  44. Lu H, Wang J, Li T et al (2017) Improved performance of lithium-sulfur battery by a functional separator design [J]. Journal of Solid State Electrochemistry 22(3):953–8

    Article  Google Scholar 

Download references

Funding

This work received financial support from the National Natural Science Foundation of China (Grants 21878089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shicheng Zhao.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 360 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Wang, J., Wang, Y. et al. A one-step deposition method to prepare separators with carbon soot loading for lithium-sulfur battery. Ionics 28, 1693–1700 (2022). https://doi.org/10.1007/s11581-022-04469-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04469-8

Keywords

Navigation