Log in

Theoretical study of the solubility of Pt salts in ionic liquids and deep eutectic solvents

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

High-performance oxygen reduction reaction (ORR) catalysts are important for the application of proton exchange membrane fuel cell (PEMFC); electrodeposition of Pt-based catalysts is a viable method for its good controllability and operation. The exploration of green electrodeposition technology with ionic liquids (ILs) or other non-aqueous solvent like deep eutectic solvents (DESs) has attracted much attention for their property to obtain high-performance catalysts with various morphologies. Composed of diverse organic cations and inorganic or organic anions, there are various types of ILs and DESs; efficient methods are urgently needed to screen potential ILs or non-aqueous solvent for electrodeposition. Computational approach is more economical, time-saving, and effective than conventional experiments. In this study, the compatibility of 9 Pt salts in 13 ILs and DESs mixtures was studied to identify metal salts with good solubility in ILs and DESs. Simulation results show that the Reline and H2PtCl6 is the most suitable mixture with good compatibility at 298 K, maintaining good solubility after heating to 353 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liu D, Tong Y, Yan X, Liang J, Dou SX (2019) Recent Advances in Carbon‐Based Bifunctional Oxygen Catalysts for Zinc‐Air Batteries. Batteries Supercaps 2:743–765

    Article  Google Scholar 

  2. **g F, Liang R, Liu G, Ai** Y, Bai Z, Yang L, Chen Z (2019) Recent Progress in Electrically Rechargeable Zinc–Air Batteries. Adv Mater 31(31):1805230. https://doi.org/10.1002/adma.201805230

    Article  CAS  Google Scholar 

  3. Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486(7401):43–51. https://doi.org/10.1038/nature11115

    Article  CAS  PubMed  Google Scholar 

  4. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff IB, Norskov JK, Jaramillo TF (2017) Science:355(6321)

  5. Razmjooei F, Yu J-H, Lee H-Y, Lee B-J, Singh KP, Kang T-H, Kim H-J, Yu J-S (2020) Single-Atom Iron-Based Electrocatalysts for High-Temperature Polymer Electrolyte Membrane Fuel Cell: Organometallic Precursor and Pore Texture Tailoring. ACS Appl Energy Mater 3(11):11164–11176. https://doi.org/10.1021/acsaem.0c02111

    Article  CAS  Google Scholar 

  6. Ren XF, Lv QY, Liu LF, Liu BH, Wang YR, Liu AM, Wu G (2020) Current progress of Pt and Pt-based electrocatalysts used for fuel cells. Sustain Energy Fuels 4:15–30. https://doi.org/10.1039/C9SE00460B

    Article  CAS  Google Scholar 

  7. Ren X, Wang Y, Liu A, Zhang Z, Lv Q, Liu B (2020) Current progress and performance improvement of Pt/C catalysts for fuel cells. J Mater Chem A 8(46):24284–24306. https://doi.org/10.1039/D0TA08312G

    Article  CAS  Google Scholar 

  8. Liu A, Liang X, Ren X, Guan W, Gao M, Yang Y, Yang Q, Gao L, Li Y, Ma T (2020) Recent Progress in MXene‐Based Materials: Potential High‐Performance Electrocatalysts. Adv Funct Mater 30(38):2003437. https://doi.org/10.1002/adfm.202003437

    Article  CAS  Google Scholar 

  9. Nie Y, Wei Z (2020) Surface-confined Pt-based catalysts for strengthening oxygen reduction performance. Prog Nat Sci Mater Int 30(6):796–806. https://doi.org/10.1016/j.pnsc.2020.10.004

    Article  CAS  Google Scholar 

  10. Yang L, Zeng X, Wang W, Cao D (2018) Recent Progress in MOF-Derived, Heteroatom-Doped Porous Carbons as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells. Adv Funct Mater 28(7):1704537. https://doi.org/10.1002/adfm.201704537

    Article  CAS  Google Scholar 

  11. Feng L, Wang K-Y, Powell J, Zhou H-C (2019) Controllable Synthesis of Metal-Organic Frameworks and Their Hierarchical Assemblies. Matter 1(4):801–824. https://doi.org/10.1016/j.matt.2019.08.022

    Article  Google Scholar 

  12. Zhou W, Huang D-D, Wu Y-P, Zhao J, Wu T, Zhang J, Li D-S, Sun C, Feng P, Bu X (2019) Stable Hierarchical Bimetal–Organic Nanostructures as HighPerformance Electrocatalysts for the Oxygen Evolution Reaction. Angew Chem Int Ed 58(13):4227–4231. https://doi.org/10.1002/anie.201813634

    Article  CAS  Google Scholar 

  13. Zhang C, Mahmood N, Yin H, Liu F, Hou Y (2013) Synthesis of Phosphorus‐Doped Graphene and its Multifunctional Applications for Oxygen Reduction Reaction and Lithium Ion Batteries. Adv Mater 25(35):4932–4937. https://doi.org/10.1002/adma.201301870

    Article  CAS  PubMed  Google Scholar 

  14. Yamazaki S-i, Asahi M, Taguchi N, Ioroi T, Kishimoto Y, Daimon H, Inaba M, Koga K, Kurose Y, Inoue H (2020) Creation of a Highly Active Pt/Pd/C Core–Shell-Structured Catalyst by Synergistic Combination of Intrinsically High Activity and Surface Decoration with Melamine or Tetra-(tert-butyl)-tetraazaporphyrin. ACS Catal 10(24):14567–14580. https://doi.org/10.1021/acscatal.0c03124

    Article  CAS  Google Scholar 

  15. Yang ZY, Wang M, Liu GC, Chen M, Ye F, Zhang WB, Yang W, Wang XD (2020) Octahedral Pt-Ni nanoparticles prepared by pulse-like hydrothermal method for oxygen reduction reaction. Ionics 26(1):293–300. https://doi.org/10.1007/s11581-019-03205-z

    Article  CAS  Google Scholar 

  16. Gong X, Zhu J, Li J, Gao R, Zhou Q, Zhang Z, Dou H, Zhao L, Sui X, Cai J, Zhang Y, Liu B, Hu Y, Yu A, Sun S-H, Wang Z, Chen Z (2020) Adv Funct Mater.31(8) https://doi.org/10.1002/adfm.202008085

  17. Liu A, Yang Q, Ren X, Gao M, Yang Y, Gao L, Li Y, Zhao Y, Liang X, Ma T (2020) Sustain Energy Fuels 4(10):5061–5071

    Article  CAS  Google Scholar 

  18. Gasteiger HA, Marković NM (2009) Just a Dream—or Future Reality? Science 324(5923):48–49. https://doi.org/10.1126/science.1172083

    Article  CAS  PubMed  Google Scholar 

  19. Liao Y, Wang Y, Liu J, Tang Y, Wu C, Chen Y (2021) Ind Eng Chem Res 60(41):14728–14736

    Article  CAS  Google Scholar 

  20. Hwang CB, Fu YS, Lu YL, Jang SW, Chou PT, Wang CRC, Yu SJ (2000) Synthesis, Characterization, and Highly Efficient Catalytic Reactivity of Suspended Palladium Nanoparticles. J Catal 195(2):336–341. https://doi.org/10.1006/jcat.2000.2992

    Article  CAS  Google Scholar 

  21. Yin AJ, Li J, Jian W, Bennett AJ, Xu JM (2001) Fabrication of highly ordered metallic nanowire arrays by electrodeposition. Appl Phys Lett 79(7):1039–1041. https://doi.org/10.1063/1.1389765

    Article  CAS  Google Scholar 

  22. Pesika NS, Radisic A, Stebe KJ, Searson PC (2006) Fabrication of Complex Architectures Using Electrodeposition into Patterned Self-Assembled Monolayers. Nano Lett 6(5):1023–1026. https://doi.org/10.1021/nl060368f

    Article  CAS  Google Scholar 

  23. Williamson MJ, Tromp RM, Vereecken PM, Hull R, Ross FM (2003) Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nat Mater 2(8):532–536. https://doi.org/10.1038/nmat944

    Article  CAS  PubMed  Google Scholar 

  24. Wang D, Liu L-L, Li M-X, Pan X-N, Zhao Y-H, Zhang J-Q, An M-Z, Yang P-X (2018) Chin J Inorg Chem 34:409–414

    Google Scholar 

  25. Tian N, Zhou Z-Y, Sun S-G, Ding Y, Wang ZL (2007) Science 316(5825):732–735

    Article  CAS  Google Scholar 

  26. Ren X, An M (2018) Theoretical and experimental studies of the influence of gold ions and DMH on cyanide-free gold electrodeposition. RSC Adv 8(5):2667–2677. https://doi.org/10.1039/C7RA13115A

    Article  CAS  Google Scholar 

  27. Feng Z, Ren L, Zhang J, Yang P, An M (2016) Theoretical Calculations and Electrochemical Behaviors of Additives in DMH-Based Alkaline Bath for Nanocrystalline Zn-Ni Electrodeposition. J Electrochem Soc 163(9):D544–D553. https://doi.org/10.1149/2.0071610jes

    Article  CAS  Google Scholar 

  28. Lv Q, Ren X, Liu L, Guan W, Liu A (2020) Theoretical investigation of methanol oxidation on Pt and PtNi catalysts. Ionics 26(3):1325–1336. https://doi.org/10.1007/s11581-019-03280-2

    Article  CAS  Google Scholar 

  29. Liu KX, Qiao Z, Hwang S, Liu ZY, Zhang HG, Su D, Xu H, Wu G, Wang GF (2019) Mn- and N- doped carbon as promising catalysts for oxygen reduction reaction: Theoretical prediction and experimental validation. Appl Catal B Environ 243:195–203. https://doi.org/10.1016/j.apcatb.2018.10.034

    Article  CAS  Google Scholar 

  30. Tao L, Huang B, ** F, Yang Y, Luo M, Sun M, Liu Q, Gao F, Guo S (2020) ACS Nano. 14(9),  pp. 11570-11578. https://doi.org/10.1021/acsnano.0c04061

  31. **ghao L, Yang L, Guo W, **ao S, Wang L, OuYang Y, Gao P (2020) The mechanism of Co oxyhydroxide nano-islands deposited on a Pt surface to promote the oxygen reduction reaction at the cathode of fuel cells. RSC Adv 10(73):44719–44727. https://doi.org/10.1039/D0RA08645B

    Article  Google Scholar 

  32. Patnaik SS, Pachter R (2002) A molecular simulations study of the miscibility in binary mixtures of polymers and low molecular weight molecules. Polymer 43(2):415–424. https://doi.org/10.1016/S0032-3861(01)00432-3

    Article  CAS  Google Scholar 

  33. de Gennes PG, Witten TA (1980) Scaling Concepts in Polymer Physics. Phys Today 33(6):51–54. https://doi.org/10.1063/1.2914118

    Article  Google Scholar 

Download references

Acknowledgements

Supports of the National Natural Science Foundation of China (21908017 and 21902021), the Fundamental Research Funds for the Central Universities (DUT20RC(4)018 and DUT20RC(4)020), and Supercomputing Center of Dalian University of Technology for this work are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Ren.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xuefeng Ren and Yiran Wang contributed equally to this work and should be considered co-first authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4727 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Wang, Y., Liu, L. et al. Theoretical study of the solubility of Pt salts in ionic liquids and deep eutectic solvents. Ionics 28, 1985–1997 (2022). https://doi.org/10.1007/s11581-021-04393-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04393-3

Keywords

Navigation