Log in

Core–shell structured C/SiO2 composites derived from Si-rich biomass as anode materials for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lignin and ash are the main factors to limit integrated utilization of Si-rich biomass. In this study, core–shell structured lignin-SiO2 composites are prepared from rice husks (RHs) by alkali extraction and acid precipitation and applied as the precursors of anode materials to achieve efficient application. Alkaline lignin is employed to supplement carbon to improve electrochemical performance of C/SiO2 composites. The optimal sample C/SiO2-6 possesses integrated coating shells and appropriate carbon content (38.27%), resulting in stable cycling performance and high capacity retention of 534 mA h g−1 at 1 A g−1 after 1000 cycles, close to 574 mA h g−1 of the C/SiO2 composite synthesized by commercial raw materials. Meanwhile, C/SiO2-6 has superior rate performance and lower impedance, because the carbon coating improves conductivity and kinetic performance. The method provides a strategy for integrated utilization of Si-rich biomass and preparation of C/SiO2 anode materials with desirable electrochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang R, Wang K, Zhou M, Xu J, Jiang J (2021) Efficient fractionation of moso bamboo by synergistic hydrothermal-deep eutectic solvents pretreatment. Biores Technol 328:124873. https://doi.org/10.1016/j.biortech.2021.124873

    Article  CAS  Google Scholar 

  2. Patel A, Shah AR (2021) Integrated lignocellulosic biorefinery: gateway for production of second generation ethanol and value added products. J Bioresour Bioprod. https://doi.org/10.1016/j.jobab.2021.02.001

    Article  Google Scholar 

  3. Lyu Q, Chen X, Zhang Y, Yu H, Han L, **ao W (2021) One-pot fractionation of corn stover with peracetic acid and maleic acid. Bioresour Technol 320:124306. https://doi.org/10.1016/j.biortech.2020.124306

    Article  CAS  PubMed  Google Scholar 

  4. Alam M, Rammohan D, Bhavanam A, Peela NR (2021) Wet torrefaction of bamboo saw dust and its co-pyrolysis with plastic. Fuel 285:119188. https://doi.org/10.1016/j.fuel.2020.119188

    Article  CAS  Google Scholar 

  5. Dussan K, Girisuta B, Lopes M, Leahy JJ, Hayes MH (2015) Conversion of hemicellulose sugars catalyzed by formic acid: kinetics of the dehydration of D-xylose, L-arabinose, and D-glucose. Chemsuschem 8(8):1411–1428. https://doi.org/10.1002/cssc.201403328

    Article  CAS  PubMed  Google Scholar 

  6. Wen G, Guo ZA (2020) Paper-making transformation: from cellulose-based superwetting paper to biomimetic multifunctional inorganic paper. J Mater Chem A 8(39):20238–20259. https://doi.org/10.1039/d0ta07518c

    Article  CAS  Google Scholar 

  7. Rosales-Calderon O, Arantes V (2019) A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. Biotechnol Biofuels 12:240. https://doi.org/10.1186/s13068-019-1529-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes–factors affecting enzymes, conversion and synergy. Biotechnol Adv 30(6):1458–1480. https://doi.org/10.1016/j.biotechadv.2012.03.002

    Article  CAS  PubMed  Google Scholar 

  9. Deng J, **ong T, Wang H, Zheng A, Wang Y (2016) Effects of cellulose, hemicellulose, and lignin on the structure and morphology of porous carbons. ACS Sustain Chem Eng 4(7):3750–3756. https://doi.org/10.1021/acssuschemeng.6b00388

    Article  CAS  Google Scholar 

  10. Gomes ED, Rodrigues AE (2020) Recovery of vanillin from kraft lignin depolymerization with water as desorption eluent. Sep Purif Technol 239:116551. https://doi.org/10.1016/j.seppur.2020.116551

    Article  CAS  Google Scholar 

  11. Li K, Liu X, Zheng T, Jiang D, Zhou Z et al (2019) Tuning MnO2 to FeOOH replicas with bio-template 3D morphology as electrodes for high performance asymmetric supercapacitors. Chem Eng J 370:136–147. https://doi.org/10.1016/j.cej.2019.03.190

    Article  CAS  Google Scholar 

  12. Li K, Feng S, **g C, Chen Y, Liu X et al (2019) Assembling a double shell on a diatomite skeleton ternary complex with conductive polypyrrole for the enhancement of supercapacitors. Chem Commun (Camb) 55:13773–13776. https://doi.org/10.1039/c9cc06791d

    Article  CAS  Google Scholar 

  13. Wang T, Li K, Le Q, Zhu S, Guo X et al (2021) Tuning parallel manganese dioxide to hollow parallel hydroxyl oxidize iron replicas for high-performance asymmetric supercapacitors. J Colloid Interface Sci 594:812–823. https://doi.org/10.1016/j.jcis.2021.03.075

    Article  CAS  PubMed  Google Scholar 

  14. Li K, Hu Z, Zhao R, Zhou Z, **g C et al (2021) A multidimensional rational design of nickel-iron sulfide and carbon nanotubes on diatomite via synergistic modulation strategy for supercapacitors. J Colloid Interface Sci 603:799–809. https://doi.org/10.1016/j.jcis.2021.06.131

    Article  CAS  PubMed  Google Scholar 

  15. Chatterjee S, Jones EB, Clingenpeel AC, McKenna AM, Rios O, McNutt NW et al (2014) Conversion of lignin precursors to carbon fibers with nanoscale graphitic domains. ACS Sustain Chem Eng 2(8):2002–2010. https://doi.org/10.1021/sc500189p

    Article  CAS  Google Scholar 

  16. Saha D, Li Y, Bi Z, Chen J, Keum JK, Hensley DK et al (2014) Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon. Langmuir 30(3):900–910. https://doi.org/10.1021/la404112m

    Article  CAS  PubMed  Google Scholar 

  17. Chang Z, Yu B, Wang C (2016) Lignin-derived hierarchical porous carbon for high-performance supercapacitors. J Solid State Electrochem 20(5):1405–1412. https://doi.org/10.1007/s10008-016-3146-2

    Article  CAS  Google Scholar 

  18. Xue B, Wang X, Yu L, Di B, Chen Z, Zhu Y et al (2020) Self-assembled lignin-silica hybrid material derived from rice husks as the sustainable reinforcing fillers for natural rubber. Int J Biol Macromol 145:410–416. https://doi.org/10.1016/j.ijbiomac.2019.12.182

    Article  CAS  PubMed  Google Scholar 

  19. Schmetz Q, Teramura H, Morita K, Oshima T, Richel A, Ogino C et al (2019) Versatility of a dilute acid/butanol pretreatment investigated on various lignocellulosic biomasses to produce lignin, monosaccharides and cellulose in distinct phases. ACS Sustain Chem Eng 7(13):11069–11079. https://doi.org/10.1021/acssuschemeng.8b05841

    Article  CAS  Google Scholar 

  20. Matsakas L, Gerber M, Yu L, Rova U, Christakopoulos P (2020) Preparation of low carbon impact lignin nanoparticles with controllable size by using different strategies for particles recovery. Ind Crops Prod 147:112243. https://doi.org/10.1016/j.indcrop.2020.112243

    Article  CAS  Google Scholar 

  21. Hu X, Shang B, Zeng T, Peng Q, Li G, Zou Y et al (2019) Core-shell (nano-SnX/nano-Li4Ti5O12)@C spheres (X = Se, Te) with high volumetric capacity and excellent cycle stability for lithium-ion batteries. Nanoscale 11(48):23268–23274. https://doi.org/10.1039/c9nr07317e

    Article  CAS  PubMed  Google Scholar 

  22. Li Y, Liu L, Liu X, Feng Y, Xue B, Yu L et al (2021) Extracting lignin-SiO2 composites from Si-rich biomass to prepare Si/C anode materials for lithium ions batteries. Mater Chem Phys 262:124331. https://doi.org/10.1016/j.matchemphys.2021.124331

    Article  CAS  Google Scholar 

  23. Li Y, Liu X, Liu L, Liu W, Feng Y, Guo Y et al (2019) Coal tar electrode pitch modified rice husk ash as anode for lithium ion batteries. J Electrochem Soc 166(12):A2425–A2430. https://doi.org/10.1149/2.0271912jes

    Article  CAS  Google Scholar 

  24. Feng Y, Liu X, Liu L, Zhang Z, Teng Y, Yu D et al (2018) SiO2/C composite derived from rice husks with enhanced capacity as anodes for lithium-ion batteries. ChemistrySelect 3(37):10338–10344. https://doi.org/10.1002/slct.201802353

    Article  CAS  Google Scholar 

  25. Yao Y, Zhang J, Xue L, Huang T, Yu A (2011) Carbon-coated SiO2 nanoparticles as anode material for lithium ion batteries. J Power Sources 196(23):10240–10243. https://doi.org/10.1016/j.jpowsour.2011.08.009

    Article  CAS  Google Scholar 

  26. Feng Y, Liu L, Liu X, Teng Y, Li Y, Guo Y et al (2020) Enabling the ability of Li storage at high rate as anodes by utilizing natural rice husks-based hierarchically porous SiO2/N-doped carbon composites. Electrochim Acta 359:136933. https://doi.org/10.1016/j.electacta.2020.136933

    Article  CAS  Google Scholar 

  27. Dirican M, Yanilmaz M, Fu K, Yildiz O, Kizil H, Hu Y et al (2014) Carbon-confined PVA-derived silicon/silica/carbon nanofiber composites as anode for lithium-ion batteries. J Electrochem Soc 161(14):A2197–A2203. https://doi.org/10.1149/2.0811414jes

    Article  CAS  Google Scholar 

  28. An W, Fu J, Su J, Wang L, Peng X, Wu K et al (2017) Mesoporous hollow nanospheres consisting of carbon coated silica nanoparticles for robust lithium-ion battery anodes. J Power Sources 345:227–236. https://doi.org/10.1016/j.jpowsour.2017.01.125

    Article  CAS  Google Scholar 

  29. Tian W, Li H, Zhou J, Guo Y (2017) Preparation, characterization and the adsorption characteristics of lignin/silica nanocomposites from cellulosic ethanol residue. RSC Adv 7(65):41176–41181. https://doi.org/10.1039/c7ra06322a

    Article  CAS  Google Scholar 

  30. Gu S, Zhou J, Luo Z, Wang Q, Ni M (2013) A detailed study of the effects of pyrolysis temperature and feedstock particle size on the preparation of nanosilica from rice husk. Ind Crops Prod 50:540–549. https://doi.org/10.1016/j.indcrop.2013.08.004

    Article  CAS  Google Scholar 

  31. Barana D, Ali SD, Salanti A, Orlandi M, Castellani L, Hanel T et al (2016) Influence of lignin features on thermal stability and mechanical properties of natural rubber compounds. ACS Sustain Chem Eng 4(10):5258–5267. https://doi.org/10.1021/acssuschemeng.6b00774

    Article  CAS  Google Scholar 

  32. Lv P, Zhao H, Gao C, Zhang T, Liu X (2015) Highly efficient and scalable synthesis of SiOx/C composite with core-shell nanostructure as high-performance anode material for lithium ion batteries. Electrochim Acta 152:345–351. https://doi.org/10.1016/j.electacta.2014.11.149

    Article  CAS  Google Scholar 

  33. Guo Y, Chen X, Liu W, Wang X, Feng Y, Li Y et al (2019) Preparation of rice husk-based C/SiO2 composites and their performance as anode materials in lithium ion batteries. J Electron Mater 49(2):1081–1089. https://doi.org/10.1007/s11664-019-07785-4

    Article  CAS  Google Scholar 

  34. Ding X, Liang D, Zhao H (2021) Enhanced electrochemical performance promoted by tin in silica anode materials for stable and high-capacity lithium-ion batteries. Materials (Basel) 14(5):1071. https://doi.org/10.3390/ma14051071

    Article  CAS  Google Scholar 

  35. Feng Y, Liu L, Liu X, Li Y, Wu Y, Zhu Y et al (2021) N-enriched porous carbon/SiO2 composites derived from biomass rice husks for boosting Li-ion storage: insight into the effect of N-do**. Chem-A Euro J 27(41):10749–10757. https://doi.org/10.1002/chem.202100727

    Article  CAS  Google Scholar 

  36. Gu Z, **a X, Liu C, Hu X, Chen Y et al (2018) Yolk structure of porous C/SiO2/C composites as anode for lithium-ion batteries with quickly activated SiO2. J Alloy Compd 757:265–272. https://doi.org/10.1016/j.jallcom.2018.05.076

    Article  CAS  Google Scholar 

  37. Nita C, Fullenwarth J, Monconduit L, Meins J, Fioux p, et al (2019) Eco-friendly synthesis of SiO2 nanoparticles confined in hard carbon: a promising material with unexpected mechanism for Li-ion batteries. Carbon 143:598–609. https://doi.org/10.1016/j.carbon.2018.11.069

    Article  CAS  Google Scholar 

  38. Tang X, Zhao C, Li Z, Zhang Y, Gu S (2020) Hollow sandwich-structured N-doped carbon-silica-carbon nanocomposite anode materials for Li ion batteries. J Phys: Conf Ser 1520:012012. https://doi.org/10.1088/1742-6596/1520/1/012012

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Graduate Innovation Fund of Jilin University (No.101832020CX087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aofeng Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2075 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, L., Liu, X. et al. Core–shell structured C/SiO2 composites derived from Si-rich biomass as anode materials for lithium-ion batteries. Ionics 28, 151–160 (2022). https://doi.org/10.1007/s11581-021-04335-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04335-z

Keywords

Navigation