Log in

A facile synthetic strategy for highly microporous Schiff-base polymer as sulfur hosts for lithium-sulfur batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The widespread application of Li–S batteries is severely hampered due to the inferior intrinsic conductivity of sulfur, shuttling effects of polysulfides, and volume change of sulfur cathodes. To boost the performance, a highly microporous Schiff-base polymer (HMSP) with linear structure has been synthesized through a facile synthetic strategy and was employed as the hosts for sulfur cathodes. The HMSP offered an impressive specific surface area of 239.2 m2 g−1 with abundant micropores at 1.5 nm, ensuring fast ion and charge transport, and resisting volume change of the electrode. The high N and O contents are beneficial to absorb the polysulfides, reducing the shuttling effect. Benefiting from the above advantages, the HMSP/S cathode generated an initial discharge capacity of 935.5 mAh g−1 at 0.2 C, and robust durability. This work not only developed a facile synthetic route for HMSP but also expanded the application of HMSP in Li–S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang R, Yang J, Chen X, Zhao Y, Zhao W, Qian G, Li S, **ao Y, Chen H, Ye Y (2020) Highly dispersed cobalt clusters in nitrogen-doped porous carbon enable multiple effects for high-performance Li–S battery. Adv Energy Mater 10:1903550

    Article  CAS  Google Scholar 

  2. Kumar R, Liu J, Hwang J-Y, Sun Y-K (2018) Recent research trends in Li–S batteries. J Mater Chem A 6:11582–11605

    Article  CAS  Google Scholar 

  3. Wang M, Fan L, Sun X, Guan B, Jiang B, Wu X, Tian D, Sun K, Qiu Y, Yin X (2020) Nitrogen-doped CoSe2 as a bifunctional catalyst for high areal capacity and lean electrolyte of Li–S battery. ACS Energy Lett 5:3041–3050

    Article  CAS  Google Scholar 

  4. Wen G, Sui Y, Zhang X, Li J, Zhang Z, Zhong S, Tang S, Wu L (2021) Mn3O4 anchored polypyrrole nanotubes as an efficient sulfur host for high performance lithium-sulfur batteries. J Colloid Interf Sci 589:208–216

    Article  CAS  Google Scholar 

  5. Li S, Zhang W, Zheng J, Lv M, Song H, Du L (2021) Inhibition of polysulfide shuttles in Li–S batteries: modified separators and solid-state electrolytes. Adv Energy Mater 11:2000779

    Article  CAS  Google Scholar 

  6. Li Y, Xu P, Chen G, Mou J, Xue S, Li K, Zheng F, Dong Q, Hu J, Yang C (2020) Enhancing Li-S redox kinetics by fabrication of a three dimensional Co/CoP@ nitrogen-doped carbon electrocatalyst. Chem Eng J 380:122595

    Article  CAS  Google Scholar 

  7. Fretz SJ, Agostini M, Jankowski P, Johansson P, Matic A, Palmqvist AEC (2020) Amine- and amide-functionalized mesoporous carbons: a strategy for improving sulfur/host interactions in Li–S batteries. Batteries Supercaps 3:757–765

    Article  CAS  Google Scholar 

  8. Baumann AE, Downing JR, Burns DA, Hersam MC, Thoi VS (2020) Graphene–metal–organic framework composite sulfur electrodes for Li–S batteries with high volumetric capacity. ACS Appl Mater Interfaces 12:37173–37181

    Article  CAS  Google Scholar 

  9. Zhang S, **ao W, Zhang Y, Liu K, Zhang X, Zhao J, Wang Z, Zhang P, Shao G (2018) Construction of a low-defect and highly conductive 3D graphene network to enable a high sulphur content cathode for high performance Li–S/graphene batteries. J Mater Chem A 6:22555–22565

    Article  CAS  Google Scholar 

  10. Liu K, Zhao H, Ye D, Zhang J (2021) Recent progress in organic polymers-composited sulfur materials as cathodes for lithium-sulfur battery. Chem Eng J 417:129309

  11. Liu X, Chen P, Chen J, Zeng Q, Wang Z, Li Z, Zhang L (2020) A nitrogen-rich hyperbranched polymer as cathode encapsulated material for superior long-cycling lithium-sulfur batteries. Electrochim Acta 330:135337

    Article  CAS  Google Scholar 

  12. Huang S, Guan R, Wang S, **ao M, Han D, Sun L, Meng Y (2019) Polymers for high performance Li-S batteries: material selection and structure design. Prog Polym Sci 89:19–60

    Article  CAS  Google Scholar 

  13. Guan R, Zhong L, Wang S, Han D, **ao M, Sun L, Meng Y (2020) Synergetic covalent and spatial confinement of sulfur species by phthalazinone-containing covalent triazine frameworks for ultrahigh performance of Li–S batteries. ACS Appl Mater Interfaces 12:8296–8305

    Article  CAS  Google Scholar 

  14. Wu J, Liu S, Huang J, Cui Y, Ma P, Wu D, Matyjaszewski K (2021) Fabrication of advanced hierarchical porous polymer nanosheets and their application in lithium–sulfur batteries. Macromolecules 54:2992–2999

    Article  CAS  Google Scholar 

  15. **ao Z, Kong D, Song Q, Zhou S, Zhang Y, Badshah A, Liang J, Zhi L (2018) A facile Schiff base chemical approach: towards molecular-scale engineering of NC interface for high performance lithium-sulfur batteries. Nano Energy 46:365–371

    Article  CAS  Google Scholar 

  16. Liu XF, Chen H, Wang R, Zang SQ, Mak TC (2020) Cationic covalent-organic framework as efficient redox motor for high-performance lithium–sulfur batteries. Small 16:2002932

    Article  CAS  Google Scholar 

  17. Wang J, Si L, Wei Q, Hong X, Lin L, Li X, Chen J, Wen P, Cai Y (2019) An imine-linked covalent organic framework as the host material for sulfur loading in lithium–sulfur batteries. J Energy Chem 28:54–60

    Article  Google Scholar 

  18. Al Zoubi W, Ko YG (2016) Organometallic complexes of Schiff bases: recent progress in oxidation catalysis. J Organomet Chem 822:173–188

    Article  CAS  Google Scholar 

  19. Sun Y, Sun Y, Pan Q, Li G, Han B, Zeng D, Zhang Y, Cheng H (2016) A hyperbranched conjugated Schiff base polymer network: a potential negative electrode for flexible thin film batteries. Chem Commun 52:3000–3002

    Article  CAS  Google Scholar 

  20. Zhu D, Jiang J, Sun D, Qian X, Wang Y, Li L, Wang Z, Chai X, Gan L, Liu M (2018) A general strategy to synthesize high-level N-doped porous carbons via Schiff-base chemistry for supercapacitors. J Mater Chem A 6:12334–12343

    Article  CAS  Google Scholar 

  21. Li Z, Chen Y, Tian M, Cai X, Gu A (2021) Mesoporous manganese cobaltate: colloid assisted ethylene glycol combustion synthesis and application in efficient water oxidation. J Alloy Compd 865:158882

    Article  CAS  Google Scholar 

  22. Li Z, Tian M, Chen Y, Liu Y, Cai Y, Wei W (2021) MOFs derived (Ni0.75Co0.25)Se2 nanoparticles embedded in N-doped nanocarbon for hybrid supercapacitors. Ceram Int 47:12623–12630

    Article  CAS  Google Scholar 

  23. Wang D-G, Li N, Hu Y, Wan S, Song M, Yu G, ** Y, Wei W, Han K, Kuang G-C, Zhang W (2018) Highly fluoro-substituted covalent organic framework and its application in lithium–sulfur batteries. ACS Appl Mater Interfaces 10:42233–42240

    Article  CAS  Google Scholar 

  24. Liu Y-S, Liu X, Xu S-M, Bai Y-L, Ma C, Bai W-L, Wu X-Y, Wei X, Wang K-X, Chen J-S (2019) 3D ordered macroporous MoO2 attached on carbonized cloth for high performance free-standing binder-free lithium–sulfur electrodes. J Mater Chem A 7:24524–24531

    Article  CAS  Google Scholar 

  25. Elkholy AE, Duignan TT, Sun X, Zhao XS (2021) Stable α-MoO3 electrode with a widened electrochemical potential window for aqueous electrochemical capacitors. ACS Appl Energ Mater 4:3210–3220

    Article  CAS  Google Scholar 

  26. Zhang M, Xu Y, Fan H, Zhao N, Yan B, Wang C, Ma J, Yadav AK, Zhang W, Du Z, Zheng X, Li M, Dong G, Wang W (2020) In situ synthesis of 3D Co@Co3O4 nanosheet arrays for hybrid supercapacitors with ultra-high rate performance. J Alloy Compd 826:154115

    Article  CAS  Google Scholar 

  27. Zhao N, Fan H, Zhang M, Ma J, Du Z, Yan B, Li H, Jiang X (2020) Simple electrodeposition of MoO3 film on carbon cloth for high-performance aqueous symmetric supercapacitors. Chem Eng J 390:124477

    Article  CAS  Google Scholar 

  28. Zhao N, Fan H, Zhang M, Ma J, Wang C, Yadav AK, Li H, Jiang X, Cao X (2020) Beyond intercalation-based supercapacitors: the electrochemical oxidation from Mn3O4 to Li4Mn5O12 in Li2SO4 electrolyte. Nano Energy 71:104626

    Article  CAS  Google Scholar 

  29. Shastri M, Shetty M, Rani MN, Muniyappa M, Sree MS, Gangaraju V, Sabanhalli C, Lokesh SV, Shivaramu PD, Rangappa D (2021) Reduced graphene oxide wrapped sulfur nanocomposite as cathode material for lithium sulfur battery. Ceram Int 47:14790–14797

    Article  CAS  Google Scholar 

  30. Song H, Yuan H, Chen H, Tang A, Xu G, Liu L, Zhang Z, Kuang Q (2020) Synthesis of TiO2/S@PPy composite for chemisorption of polysulfides in high performance Li-S batteries. J Solid State Electr 24:997–1006

    Article  CAS  Google Scholar 

  31. Lei J, Chen J, Zhang H, Naveed A, Yang J, Nuli Y, Wang J (2020) High molecular weight polyacrylonitrile precursor for S@pPAN composite cathode materials with high specific capacity for rechargeable lithium batteries. ACS Appl Mater Interfaces 12:33702–33709

    Article  CAS  Google Scholar 

  32. Li C, Zou Y, Duan J, Wang Y, Qi Z, Li Z (2018) Polythiophene lamella wrapped sulfur as cathode for rechargeable lithium sulfur batteries. Mater Lett 218:142–145

    Article  CAS  Google Scholar 

  33. Jia P, Hu T, He Q, Cao X, Ma J, Fan J, Chen Q, Ding Y, Pyun J, Geng J (2019) Synthesis of a macroporous conjugated polymer framework: iron do** for highly stable, highly efficient lithium–sulfur batteries. ACS Appl Mater Interfaces 11:3087–3097

    Article  CAS  Google Scholar 

  34. Sovizi MR, Fahimi Z (2018) Honeycomb polyaniline-dodecyl benzene sulfonic acid (hPANI-DBSA)/sulfur as a new cathode for high performance Li–S batteries. J Taiwan Inst Chem E 86:270–280

    Article  CAS  Google Scholar 

  35. Zhou B, Hu X, Zeng G, Li S, Wen Z, Chen L (2017) Bottom-up construction of porous organic frameworks with built-in TEMPO as a cathode for lithium–sulfur batteries. Chemsuschem 10:2955–2961

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the support from the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (19KJA460002) and the Natural Science Foundation of Jiangsu University of Technology (No. KYY18041).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongchun Li or Ya Cai.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5467 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, M., Chen, Y., Jia, H. et al. A facile synthetic strategy for highly microporous Schiff-base polymer as sulfur hosts for lithium-sulfur batteries. Ionics 27, 4259–4267 (2021). https://doi.org/10.1007/s11581-021-04210-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04210-x

Keywords

Navigation