Log in

High-voltage LiNi0.4Co0.4Mn0.2O2/graphite pouch battery cycled at 4.5 V with a LiDFP-based electrolyte

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Increasing the charging cutoff voltage is an effective method for improving the energy density of lithium-ion batteries. However, the conventional carbonate-based electrolyte with LiPF6 is unstable when the end-of-charge voltage up to 4.5 V (vs. Li/Li+), resulting in poor cycling stability of LIBs. In this work, when 1.0 wt% LiDFP is added into the conventional electrolyte for LiNi0.4Co0.4Mn0.2O2/graphite pouch cells, the capacity retention of the cell is significantly improved from 22.9 to 87.6% after 100 cycles, even a high capacity retention of 81.0% is maintained after 200 cycles. The results of spectroscopic and electrochemical techniques indicate that the passivation film induced by LiDFP can be formed simultaneously at both cathode and anode surfaces. The improvement of cell high-voltage performance can be credited to the addition of LiDFP, which effectively inhibited the dissolution of transition metals and the side reaction of electrolyte on the cathode and anode surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gu S, Cui Y, Wen K, Chen S, Zhao J (2020) 3-cyano-5-fluorobenzenzboronic acid as an electrolyte additive for enhancing the cycling stability of Li1.2Mn0.54Ni0.13Co0.13O2 cathode at high voltage. J Alloys Compd 829:154491

    Article  CAS  Google Scholar 

  2. Li X, Shi H, Zhang L, Chen J, Lü P (2020) Novel synthesis of SiOx/C composite as high-capacity lithium-ion battery anode from silica-carbon binary xerogel. Chin J Chem Eng 28:579–583

    Article  Google Scholar 

  3. Zhou F, Yang X, Liu J, Liu J, Hu R, Ouyang L, Zhu M (2021) Boosted lithium storage cycling stability of TiP2 by in-situ partial self-decomposition and nano-spatial confinement. J Power Sources 485:229337

    Article  CAS  Google Scholar 

  4. Zhang M, Hu R, Liu J, Ouyang L, Liu J, Yang L, Zhu M (2017) A ZnGeP2/C anode for lithium-ion and sodium-ion batteries. Electrochem Commun 77:85–88

    Article  CAS  Google Scholar 

  5. Zhou F, Ouyang L, Liu J, Yang X, Zhu M (2020) Chemical bonding black phosphorus with TiO2 and carbon toward high-performance lithium storage. J Power Sources 449:227549

    Article  CAS  Google Scholar 

  6. Tao F, Yan X, Liu J, Lei H, Chen L (2016) Effects of PVP-assisted Co3O4 coating on the electrochemical and storage properties of LiNi0.6Co0.2Mn0.2O2 at high cut-off voltage. Electrochim Acta 210:548–556

    Article  CAS  Google Scholar 

  7. Pham H, Mirolo M, Tarik M, Kazzi M, Trabesinger S (2020) Multifunctional electrolyte additive for improved interfacial stability in Ni-rich layered oxide full-cells. Energy Storage Mater 33:216–229

    Article  Google Scholar 

  8. Wang C, Yu L, Fan W, Liu J, Ouyang L, Yang L, Zhu M (2017) 3,3′-(Ethylenedioxy)dipropiononitrile as an electrolyte additive for 4.5 V LiNi1/3Co1/3Mn1/3O2/graphite cells. ACS Appl Mater Interfaces 9:9630–9639

    Article  CAS  Google Scholar 

  9. Han Y, Yoo J, Yim T (2016) Distinct reaction characteristics of electrolyte additives for high-voltage lithium-ion batteries: tris(trimethylsilyl) phosphite, borate, and phosphate. Electrochim Acta 215:455–465

    Article  CAS  Google Scholar 

  10. Imholt L, Röser S, Börner M, Streipert B, Rad B, Winter M, Cekic-Laskovi I (2017) Trimethylsiloxy based metal complexes as electrolyte additives for high voltage application in lithium ion cells. Electrochim Acta 235:332–339

    Article  CAS  Google Scholar 

  11. Li Y, Wang K, Chen J, Zhang W, Luo X, Hu Z, Zhang Q, **ng L, Li W (2020) Stabilized high-voltage cathodes via an F-rich and Si-containing electrolyte additive. ACS Appl Mater Interfaces 12:28169–28178

    Article  CAS  Google Scholar 

  12. Wang C, Tang S, Zuo X, **ao X, Liu J, Nan J (2015) 3-(1,1,2,2-Tetrafluoroethoxy)-1,1,2,2-tetrafluoropropane as a high voltage solvent for LiNi1/3Co1/3Mn1/3O2/graphite cells. J Electrochem Soc 162:A1997–A2003

    Article  CAS  Google Scholar 

  13. Wang C, Zuo X, Zhao M, **ao X, Yu L, Nan J (2016) 1H,1H,5H-Perfluoropentyl-1,1,2,2-tetrafluoroethylether as a co-solvent for high voltage LiNi1/3Co1/3Mn1/3O2/graphite cells. J Power Sources 307:772–781

    Article  CAS  Google Scholar 

  14. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4417

    Article  CAS  Google Scholar 

  15. Markevich E, Baranchugov V, Aurbach D (2006) On the possibility of using ionic liquids as electrolyte solutions for rechargeable 5 V Li ion batteries. Electrochem Commun 8:1331

    Article  CAS  Google Scholar 

  16. Kang Y, Park I, Park M, Choi W, Lee S, Mun J, Choi B, Koh M, Kim D, Park K (2020) L-Tryptophan: antioxidant as a film-forming additive for a high-voltage cathode. Langmuir 36:2823–2828

    Article  CAS  Google Scholar 

  17. Sun Y, Huang J, **ang H, Liang X, Feng Y, Yu Y (2020) 2-(Trifluoroacetyl) thiophene as an electrolyte additive for high-voltage lithium-ion batteries using LiCoO2 cathode. J Mater Sci Technol 55:198–202

    Article  Google Scholar 

  18. Liu Q, Yang G, Liu S, Han M, Wang Z, Chen L (2019) Trimethyl borate as film-forming electrolyte additive to improve high-voltage performances. ACS Appl Mater Interfaces 11:17435–17443

    Article  CAS  Google Scholar 

  19. Yang B, Zhang H, Yu L, Fan W, Huang D (2016) Lithium difluorophosphate as an additive to improve the low temperature performance of LiNi0.5Co0.2Mn0.3O2/graphite cells. Electrochim Acta 221:107–114

    Article  CAS  Google Scholar 

  20. Wang C, Yu L, Fan W, Liu R, Liu J, Ouyang L, Yang L, Zhu M (2018) Enhanced high-voltage cyclability of LiNi0.5Co0.2Mn0.3O2-based pouch cells via lithium difluorophosphate introducing as electrolyte additive. J Alloys Compd 755:1–9

    Article  CAS  Google Scholar 

  21. Wang C, Yu L, Fan W, Liu J, Ouyang L, Yang L, Zhu M (2018) Lithium difluorophosphate as a promising electrolyte lithium additive for high-voltage lithium-ion batteries. ACS Appl Energy Mater 1:2647–2656

    Article  CAS  Google Scholar 

  22. Liu Q, Ma L, Du C, Dahn J (2018) Effects of the LiPO2F2 additive on unwanted lithium plating in lithium-ion cells. Electrochim Acta 263:237–248

    Article  CAS  Google Scholar 

  23. Zhao W, Zheng G, Lin M, Zhao W, Li D, Guan X, Ji Y, Ortiz G, Yang Y (2018) Toward a stable solid-electrolyte-interfaces on nickel-rich cathodes: LiPO2F2 salt-type additive and its working mechanism for LiNi0.5Mn0.25Co0.25O2 cathodes. J Power Sources 380:149–157

    Article  CAS  Google Scholar 

  24. Zheng H, **ang H, Jiang F, Liu Y, Sun Y, Liang X, Feng Y, Yu Y (2020) Lithium difluorophosphate-based dual-salt low concentration electrolytes for lithium metal batteries. Adv Energy Mater 10:2001440

    Article  CAS  Google Scholar 

  25. Shi P, Zhang L, **ang H, Liang X, Sun Y, Xu W (2018) Lithium difluorophosphate as a dendrite-suppressing additive for lithium metal batteries. ACS Appl Mater Interfaces 10:22201–22209

    Article  CAS  Google Scholar 

  26. Prakasha K, Madasamy K, Kathiresan M, Prakash A (2019) Ethylviologen hexafluorophosphate as electrolyte additive for high-voltage nickel-rich layered cathode. J Phys Chem C 123:28604–28610

    Article  Google Scholar 

  27. Zheng Y, Xu N, Chen S, Liao Y, Zhong G, Zhang Z, Yang Y (2020) Construction of a stable LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode interface by a multifunctional organosilicon electrolyte additive. ACS Appl Energy Mater 3:2837–2845

    Article  CAS  Google Scholar 

  28. Zuo X, Zhao M, Ma X, **ao X, Liu J, Nan J (2017) Effect of diphenyl disulfide as an additive on the electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2/graphite batteries at elevated temperature. Electrochim Acta 245:705–714

    Article  CAS  Google Scholar 

  29. Hao J, Li X, Zeng X, Li D, Mao J, Guo Z (2020) Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy Environ Sci 13:3917–3949

    Article  CAS  Google Scholar 

  30. Hao J, Yuan L, Ye C, Chao D, Davey K, Guo Z, Qiao S (2021) Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew Chem 133:7442–7451

    Article  Google Scholar 

Download references

Funding

This project funded by the China Postdoctoral Science Foundation (2020M682662), the Natural Science Foundations of Guangdong (No. 2018A030313423), and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. NSFC51621001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingquan Wang or Wei Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Liu, M., Huang, D. et al. High-voltage LiNi0.4Co0.4Mn0.2O2/graphite pouch battery cycled at 4.5 V with a LiDFP-based electrolyte . Ionics 27, 4135–4142 (2021). https://doi.org/10.1007/s11581-021-04193-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04193-9

Keywords

Navigation