Log in

Influence of chloride ion on zinc electrodeposition from choline chloride based deep eutectic solvent

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

When deep eutectic solvent (DES) is used to recycle Zn from zinc-containing dusts, chlorine present in these dusts will enter into the resulting solution and inevitably affects subsequent electrodeposition of zinc. This paper investigated the effect of added chloride ions on the electrodeposition behavior of zinc from choline chloride-urea-ethylene glycol (ChCl-urea-EG) DES-containing zinc oxide. Compared with the blank ChCl-urea-EG DES, the addition of chloride ion is found to increase the current efficiency, reduce the energy consumption, and improve the compactness of Zn deposits. In addition, cyclic voltammetry results and kinetic parameters lead to the conclusion that the added chloride ions have an inhibiting effect on Zn(II) ion migration, but have a promoting effect on reduction reaction of Zn(II) ion. The results of X-ray diffraction analysis reveal that the addition of chloride ions affects the crystallographic orientation by enhancing the growth of (101), (102), and (103) planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pereira NM, Pereira CM, Araújo JP, Silva AF (2017) Zinc electrodeposition from deep eutectic solvent containing organic additives. J Electroanal Chem 801:545–551

    Article  CAS  Google Scholar 

  2. Tao N, Xu WG, Lu SX (2011) Fabrication of super hydrophobic surfaces on zinc substrates and their application as effective corrosion barriers. Appl Surf Sci 258:1359–1365

    Article  Google Scholar 

  3. Bao QH, Zhao LQ, **g HM, Mao A (2018) Electrodeposition of zinc from low transition temperature mixture formed by choline chloride+ lactic acid. Materials Today Communications 14:249–253

    Article  CAS  Google Scholar 

  4. Wang JL (2006) Analysis on the raw material resources of Zn-MnO2 batteries. Chinese Battery Industry 11:258–262

    Google Scholar 

  5. Jiang JM (2004) Status and sustainable development of lead and zinc smelting industry in China. The Chinese Journal of Nonferrous Metals 5:52–58

    Google Scholar 

  6. Lan XH (2002) Current situation and prospects of world regenerated zinc industry. World Nonferrous Metals 2:39–41

    Google Scholar 

  7. Harper EM, Bertram M, Graedel TE (2006) The contemporary Latin America and the Caribbean zinc cycle: one year stocks and flows. Resour Conserv Recycl 47:82–100

    Article  Google Scholar 

  8. Gordon RB, Graedel TE, Bertram M, Fuse K et al (2003) The characterization of technological zinc cycles. Resour Conserv Recycl 39:107–135

    Article  Google Scholar 

  9. Wu XL, Zhong Q, Liu XL (2013) Chloride ion removal from zinc sulfate aqueous solution by electrochemical method. Hydromctallurgy 134:62–65

    Article  Google Scholar 

  10. Ruiz O, Clemente C, Alonso M et al (2007) Recycling of an electric arc furnace flue dust to obtain high grade ZnO. J Hazard Mater 141(1):6–33

    Article  Google Scholar 

  11. Abbott AP, Capper G, Katy J et al (2007) Electrodeposition of zinc–tin alloys from deep eutectic solvents based on choline chloride. J Electroanal Chem 599:288–294

    Article  CAS  Google Scholar 

  12. **e XL, Zou X, Lu XG et al (2016) Electrodeposition of Zn and Cu-Zn alloy from ZnO/CuO precursors in deep eutectic solvent. Appl Surf Sci 385:481–489

    Article  CAS  Google Scholar 

  13. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126:9142–9147

    Article  CAS  Google Scholar 

  14. Abbott AP, Capper G, Davies DL, Shikotra P (2013) Processing metal oxides using ionic liquids. Miner Process Ext Metall 115:15–18

    Article  Google Scholar 

  15. Kim BK, Lee EJ, Kang YJ, Lee JJ (2018) Application of ionic liquids for metal dissolution and extraction. J Ind Eng Chem 61:388–397

    Article  CAS  Google Scholar 

  16. Abbott AP, Collins J, Dalrymple I (2009) Processing of electric arc furnace dust using deep eutectic solvents. Aust J Chem 62:341–347

    Article  CAS  Google Scholar 

  17. Abbott AP, Frisch G, Hartley J, Ryder KS (2011) Processing of metals and metal oxides using ionic liquids. Green Chem 13:471–481

    Article  CAS  Google Scholar 

  18. Bakkar A, Neubert V (2019) Recycling of cupola furnace dust: extraction and electrodeposition of zinc in deep eutectic solvents. J Alloys Compd 771:424–432

    Article  CAS  Google Scholar 

  19. Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082

    Article  CAS  Google Scholar 

  20. Gomes A, Pereira MI (2006) Zn electrodeposition in the presence of surfactants: Part I. Voltammetric and structural studies. Electrochim Acta 52:863–871

    Article  CAS  Google Scholar 

  21. Yang H, Reddy RG (2014) Electrochemical deposition of zinc from zinc oxide in 2:1 urea/choline chloride ionic liquid. Electrochim Acta 147:513–519

    Article  CAS  Google Scholar 

  22. Bard AJ, Faulkner LR, Leddy J, Zoski CG (1980) Electrochemical methods: fundamentals and applications. Wiley, New York, pp 124–128

    Google Scholar 

  23. Abbott AP, Capper G, Davies DL, Rasheed RK, Shikotra P (2005) Selective extraction of metals from mixed oxide matrixes using choline-based ionic liquids. Inorg Chem 44:6497–6499

    Article  CAS  Google Scholar 

  24. Abbott AP, Capper G, Davies DL, Rasheed RK (2004) Ionic liquid analogues formed from hydrated metal salts. Chem Eur J 10:3769–3774

    Article  CAS  Google Scholar 

  25. Xue F, Wei X, Dong J, Wang C, Ke W (2019) Effect of chloride ion on corrosion behavior of low carbon steel in 0.1 M NaHCO3 solution with different dissolved oxygen concentrations. J Mater Sci Technol 35:596–603

    Article  Google Scholar 

  26. Zhang Q, Hua Y (2008) Effects of 1-butyl-3-methylimidazolium hydrogen sulfate-[BMIM]HSO4 on zinc electrodeposition from acidic sulfate electrolyte. J Appl Electrochem 39:261–267

    Article  Google Scholar 

  27. Tripathy BC, Das SC, Hefter GT (1998) Zinc electrowinning from acidic sulphate solutions. Part II: effects of triethylbenzylammonium chloride. J Appl Electrochem 28:915–920

    Article  CAS  Google Scholar 

  28. Trejo GR, Ortega B, Meas YV, Ozil P, Chainet E, Nguyen B (1998) Nucleation and growth of zinc from chloride concentrated solutions. J Electrochem Soc 145:4090–4097

    Article  CAS  Google Scholar 

  29. Wang YQ, Tang W, Zhang L (2015) Crystalline size effects on texture coefficient, electrical and optical properties of sputter-deposited Ga-doped ZnO thin films. J Mater Sci Technol 31:175–181

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (51764027) and the National Basic Research Program of China (2014CB643404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ang Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 72 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Xu, C., Liu, H. et al. Influence of chloride ion on zinc electrodeposition from choline chloride based deep eutectic solvent. Ionics 26, 1483–1490 (2020). https://doi.org/10.1007/s11581-019-03293-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03293-x

Keywords

Navigation