Log in

Coral-like CoP hollow composites as effective host cathodes for lithium-sulfur batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Designing a better framework for anchoring sulfur is critical for lithium-sulfur battery. Coral-like CoP composites with interconnected pore channels were synthesized via precipitation and phosphorization and were used as the host materials for sulfur (CoP@S). The developed unique architecture possesses the ability to both physically confine polysulfides and chemically bind these species inside the host surface, efficient pathways to facilitate electron/ion transportation, good structural durability to buffer the volume variation of sulfur, and has an elastic protecting shell layer to block the soluble of polysulfides. Owing to these advantages, the resulting CoP@S electrode delivered a high charge capacity of 766 mAh/g with high first columbic efficiency of 98.2% at 0.2 C, good rate capability of 586 mAh/g at 1 C, and good long cycling stability (with a capacity of 438 mAh/g after 500 cycles at 2 C), suggesting excellent high-rate long cycling performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mao Y, Li G, Guo Y, Li Z, Liang C, Peng X, Lin Z (2017) Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries. Nat Commun 8:14628

    Article  Google Scholar 

  2. Ling M, Zhang L, Zheng T, Feng J, Guo J, Mai L, Liu G (2017) Nucleophilic substitution between polysulfides and binders unexpectedly stabilizing lithium sulfur battery. Nano Energy 38:82–90

    Article  CAS  Google Scholar 

  3. Hou TZ, Xu WT, Chen X, Peng HJ, Huang JQ, Zhang Q (2017) Lithium bond chemistry in lithium-sulfur batteries. Angew Chem Int Ed 56(28):8178–8182

    Article  CAS  Google Scholar 

  4. Liu J, Qian T, Wang M, Liu X, Xu N, You Y, Yan C (2017) Molecularly imprinted polymer enables high-efficiency recognition and trap** lithium polysulfides for stable lithium sulfur battery. Nano Lett 17(8):5064–5070

    Article  CAS  Google Scholar 

  5. Chen K, Sun Z, Fang R, Shi Y, Cheng HM, Li F (2018) Metal-organic frameworks (MOFs)-derived nitrogen-doped porous carbon anchored on graphene with multifunctional effects for lithium-sulfur batteries. Adv Funct Mater 28:1707592

    Article  Google Scholar 

  6. Li G, Wang X, Seo MH, Li M, Ma L, Yuan Y, Wu T, Yu A, Wang S, Lu J, Chen Z (2018) Chemisorption of polysulfides through redox reactions with organic molecules for lithium-sulfur batteries. Nat Commun 9(1):705

    Article  Google Scholar 

  7. Pang Q, Liang X, Kwok CY, Kulisch J, Nazar LF (2017) A comprehensive approach toward stable lithium-sulfur batteries with high volumetric energy density. Adv Energy Mater 7(6):1601630

    Article  Google Scholar 

  8. Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA (2011) Porous hollow carbon@ sulfur composites for high-power lithium-sulfur batteries. Angew Chem Int Ed 50(26):5904–5908

    Article  CAS  Google Scholar 

  9. Guo J, Xu Y, Wang C (2011) Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Lett 11(10):4288–4294

    Article  CAS  Google Scholar 

  10. Li X, Cao Y, Qi W, Saraf LV, **ao J, Nie Z, Mietek J, Zhang JG, Schwenzer B, Liu J (2011) Optimization of mesoporous carbon structures for lithium-sulfur battery applications. Mater Chem 21(41):16603–16610

    Article  CAS  Google Scholar 

  11. Zhang C, Wu HB, Yuan C, Guo Z, Lou XWD (2012) Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries. Angew Chem 124(38):9730–9733

    Article  Google Scholar 

  12. Wang H, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, Cui Y, Dai H (2011) Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11(7):2644–2647

    Article  CAS  Google Scholar 

  13. Ding YL, Kopold P, Hahn K, van Aken PA, Maier J, Yu Y (2016) Facile solid-state growth of 3D well-interconnected nitrogen-rich carbon nanotube-graphene hybrid architectures for lithium-sulfur batteries. Adv Funct Mater 26(7):1112–1119

    Article  CAS  Google Scholar 

  14. Chen F, Ma L, Ren J, Luo X, Liu B, Zhou X (2018) Sandwich-type nitrogen and sulfur codoped graphene-backboned porous carbon coated separator for high performance lithium-sulfur batteries[J]. Nanomaterials 8(4):191–206

    Article  Google Scholar 

  15. Wang Y, Luo S, Wang D, Hong X, Liu S (2018) Facile synthesis of three dimensional porous cellular carbon as sulfur host for enhanced performance lithium sulfur batteries. Electrochim Acta 284:400–407

    Article  CAS  Google Scholar 

  16. Razzaq AA, Yao Y, Shah R et al (2019) High-performance lithium sulfur batteries enabled by a synergy between sulfur and carbon nanotubes. Energy Storage Mater 16:194–202

    Article  Google Scholar 

  17. Liu J, Wang M, Xu N, Qian T, Yan C (2018) Progress and perspective of organosulfur polymers as cathode materials for advanced lithium-sulfur batteries. Energy Storage Mater 15:53–64

    Article  Google Scholar 

  18. Song J, Feng S, Zhu C, Lee JI, Fu S, Dong P, Song MK, Lin Y (2017) Tuning the structure and composition of graphite-phase polymeric carbon nitride/reduced graphene oxide composites towards enhanced lithium-sulfur batteries performance. Electrochim Acta 248:541–546

    Article  CAS  Google Scholar 

  19. Song J, Gordin ML, Xu T, Chen S, Yu Z, Sohn H, Lu J, Ren Y, Duan Y, Wang D (2015) Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes. Angew Chem 127(14):4399–4403

    Article  Google Scholar 

  20. Zhang C, Mahmood N, Yin H, Liu F, Hou Y (2013) Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv Mater 25(35):4932–4937

    Article  CAS  Google Scholar 

  21. Yang CP, Yin YX, Ye H, Jiang KC, Zhang J, Guo YG (2014) Insight into the effect of boron do** on sulfur/carbon cathode in lithium-sulfur batteries. ACS Appl Mater Interfaces 6(11):8789–8795

    Article  CAS  Google Scholar 

  22. Hou TZ, Chen X, Peng HJ, Huang JQ, Li BQ, Zhang Q, Li B (2016) Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries. Small. 12(24):3283–3291

    Article  CAS  Google Scholar 

  23. Paraknowitsch JP, Thomas A (2013) Do** carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sci 6(10):2839–2855

    Article  CAS  Google Scholar 

  24. Mahmood N, Zhang C, Hou Y (2013) Nickel sulfide/nitrogen-doped graphene composites: phase-controlled synthesis and high performance anode materials for lithium ion batteries. Small. 9(8):1321–1328

    Article  CAS  Google Scholar 

  25. Song X, Wang S, Chen G, Gao T, Bao Y, Ding LX, Wang H (2018) Fe-N-doped carbon nanofiber and graphene modified separator for lithium-sulfur batteries. Chem Eng J 333:564–571

    Article  CAS  Google Scholar 

  26. Evers S, Yim T, Nazar LF (2012) Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li-S battery. J Phys Chem C 116(37):19653–19658

    Article  CAS  Google Scholar 

  27. Pang Q, Kundu D, Cuisinier M, Nazar LF (2014) Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat Commun 5:4759

    Article  CAS  Google Scholar 

  28. Li Y, Zhu J, Shi R, Dirican M, Zhu P, Yan C, Jia H, Zang J, He J, Zhang X (2018) Ultrafine and polar ZrO2-inlaid porous nitrogen-doped carbon nanofiber as efficient polysulfide absorbent for high-performance lithium-sulfur batteries with long lifespan. Chem Eng J 349:376–387

    Article  CAS  Google Scholar 

  29. He J, Chen Y, Manthiram A (2018) MOF-derived cobalt sulfide grown on 3D graphene foam as an efficient sulfur host for long-life lithium-sulfur batteries. iScience. 4:36–43

    Article  CAS  Google Scholar 

  30. Zhang Z, Kong LL, Liu S, Li GR, Gao XP (2017) A high-efficiency sulfur/carbon composite based on 3D graphene nanosheet@ carbon nanotube matrix as cathode for lithium-sulfur battery. Adv Energy Mater 7(11):1602543

    Article  Google Scholar 

  31. Li C, Li Z, Li Q, Zhang Z, Dong S, Yin L (2016) MOFs derived hierarchically porous TiO2 as effective chemical and physical immobilizer for sulfur species as cathodes for high-performance lithium-sulfur batteries. Electrochim Acta 215:689–698

    Article  CAS  Google Scholar 

  32. Luo S, Zheng C, Sun W, Wang Y, Ke J, Guo QP, Liu S, Hong X, Li Y, **e W (2018) Multi-functional CoS2-NC porous carbon composite derived from metal-organic frameworks for high performance lithium-sulfur batteries. Electrochim Acta 289:94–103

    Article  CAS  Google Scholar 

  33. Li Q, Ma J, Wang H, Yang X, Yuan R, Chai Y (2016) Interconnected Ni2P nanorods grown on nickel foam for binder free lithium ion batteries. Electrochim Acta 213:201–206

    Article  CAS  Google Scholar 

  34. Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem 120(2):379–382

    Article  Google Scholar 

  35. Liu T, Wang K, Du G et al (2016) Self-supported CoP nanosheet arrays: a non-precious metal catalyst for efficient hydrogen generation from alkaline NaBH 4 solution[J]. J Mater Chem A 4(34):13053–13057

    Article  CAS  Google Scholar 

  36. Liu T, **e L, Yang J, Kong R, du G, Asiri AM, Sun X, Chen L (2017) Self-standing CoP nanosheets array: a three-dimensional bifunctional catalyst electrode for overall water splitting in both neutral and alkaline media[J]. ChemElectroChem 4(8):1840–1845

    Article  CAS  Google Scholar 

  37. Zheng M, Zhang S, Chen S, Lin Z, Pang H, Yu Y (2017) Activated graphene with tailored pore structure parameters for long cycle-life lithium-sulfur batteries. Nano Res 10(12):4305–4317

    Article  CAS  Google Scholar 

  38. Wu K, Liu D, Tang Y (2018) In-situ single-step chemical synthesis of graphene-decorated CoFe2O4 composite with enhanced Li ion storage behaviors[J]. Electrochim Acta 263:515–523

    Article  CAS  Google Scholar 

  39. Su M, Wan H, Liu Y, **ao W, Dou A, Wang Z, Guo H (2018) Multi-layered carbon coated Si-based composite as anode for lithium-ion batteries[J]. Powder Technol 323:294–300

    Article  CAS  Google Scholar 

  40. Wu K, Yang H, Jia L, Pan Y, Hao Y, Zhang K, du K, Hu G (2019) Smart construction of 3D N-doped graphene honeycombs with (NH4)2SO4 as a multifunctional template for Li-ion battery anode:“A choice that serves three purposes”[J]. Green Chem 21:1472–1483

    Article  CAS  Google Scholar 

  41. Zheng G, Zhang Q, Cha JJ, Yang Y, Li W, Seh ZW, Cui Y (2013) Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries[J]. Nano Lett 13(3):1265–1270

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Nature Science Foundation of China (Nos: 11702234 and 11602213) and the Nature Science Foundation of Hunan province (Nos: 2018JJ3488 and 2017JJ3301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youlan Zou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zou, Y., Duan, J. et al. Coral-like CoP hollow composites as effective host cathodes for lithium-sulfur batteries. Ionics 25, 4625–4635 (2019). https://doi.org/10.1007/s11581-019-03047-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03047-9

Keywords

Navigation