Log in

Fabrication of Aquivion-type membranes and optimization of their elastic and transport characteristics

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The solution casting technology was applied to manufacture thin polymer films (~ 20–30 μm) from the ionomer solution of perfluorinated polymer with short side chains (an analogue of the commercial polymer Aquivion®). The influence of annealing temperature on the mechanical properties (elastic limit), proton conductivity, and heat capacity was investigated. The elastic limit, glass transition temperature, and proton conductivity of the samples were found to reach their maximum values at the annealing temperature 170 ± 5 °C. Comparative studies of membrane-electrode assemblies (MEA) using the commercial (Nafion NR212) and solution-casted membranes were carried out. MEA with optimized Aquivion-type membranes showed satisfactory values of fuel crossover and maximum output power. The results of the conducted studies show that the prepared Aquivion-type membranes are very promising for practical application in MEA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dobrovol’skii YA, Volkov EV, Pisareva AV, Fedotov YA, Likhachev DY, Rusanov AL (2007) Proton-exchange membranes for hydrogen-air fuel cells. Russ J Gen Chem 77(4):766–777

    Article  Google Scholar 

  2. Carrette L, Friedrich KA, Stimming U (2001) Fuel cells—fundamentals and applications. Fuel Cells 1(1):5–39

    Article  CAS  Google Scholar 

  3. Safronova EY, Yaroslavtsev AB (2016) Prospects of practical application of hybrid membranes. Petroleum Chem 56:281–293

    Article  CAS  Google Scholar 

  4. Yaroslavtsev AB, Nikonenko VV (2009) Ion exchange membrane materials: properties, modification and application. Nanotechnologies in Russia 4(3–4):137–159

    Article  Google Scholar 

  5. Nikonenko VV, Yaroslavtsev AB, Pourcelly G (2012) Ionic interactions in natural and synthetic macromolecules. N Jersy: Wiley 267 p

    Chapter  Google Scholar 

  6. Yaroslavtsev AB, Dobrovolsky YA, Shaglaeva NS, Frolova LA, Gerasimova EV, Sanginov EA (2012) Nanostructured materials for low-temperature fuel cells. Russ Chem Rev 81(3):191–220

    Article  CAS  Google Scholar 

  7. Wainright JS, Wang J-T, Weng D, Savinell RF, Litt M (1995) Acid-doped polybenzimidazoles: a new polymer electrolyte. J Electrochem Soc 142(7):L121–L123

    Article  CAS  Google Scholar 

  8. Aricò AS, Blasi AD, Brunaccini G, Sergil F, Dispenza G, Andaloro L et al (2010) High temperature operation of a solid polymer electrolyte fuel cell stack based on a new ionomer membrane. Fuel Cell 10(6):1013–1023

    Article  Google Scholar 

  9. Gebert M, Ghielmi A, Merlo L, Corasaniti M, and Arcella V. AQUIVION™—the short-side-chain and low-EW PFSA for next generation PEFCs expands production and utilization. ECS J Solid State Sci Technol 2010;26(1):279–83

  10. Merlo L, Oldani C, Apostolo M, Arcella V (2012) PFSA Aquivion® membranes: general features and degradation mechanisms. Solvay Specialty Polymers SPA

  11. Skulimowska A, Dupont M, Zaton M, Sunde S, Merlo L, Deborah JJ, Rozière J (2014) Proton exchange membrane water electrolysis with short-side-chain Aquivion® membrane and IrO2 anode catalyst. Int J Hydrog Energy 39(12):6307–6316

    Article  CAS  Google Scholar 

  12. Boreskov Institute of Catalysis SB RAS, RU Pat, 2545182 C1, 2013

  13. Kulvelis YuV, Ivanchev SS, Lebedev VT, Primachenko VS, Likhomanov VS, Török Gy Structure characterization of perfluorosulfonic short side chainpolymer membranes. Solid RSC Advances, 2015; 5(90): 73820–26

    Article  CAS  Google Scholar 

  14. Stassi A, Gatto I, Passalacqua E, Antonucci V, Arico AS, Merlo L, Oldani C, Pagano E (2011) Performance comparison of long and short-side chain perfluorosulfonic membranes for high temperature polymer electrolyte membrane fuel cell operation. J Power Sources 196(21):8925–8930

    Article  CAS  Google Scholar 

  15. Park YC, Kakinuma K, Uchida H, Watanebe M, Uchida M (2015) Effects of short-side-chain perfluorosulfonic acid ionomers as binders on the performance of low Pt loading fuel cell cathodes. J Power Sources 275:384–391

    Article  CAS  Google Scholar 

  16. Siracusano S, Hodnik N, Jovanovic P, Ruiz- Zepeda F, Šala M, Baglio V et al (2017) New insights into the stability of a high performance nanostructured catalyst for sustainable water electrolysis. Nano Energy 40:618–632

    Article  CAS  Google Scholar 

  17. Korchagin OV, Bogdanovskaya VA, Tarasevich MR, Kuzov AV, Zhutaeva GV, Radina MV, Novikov VT, Zharikov VV (2016) Characteristics of nonplatinum cathode catalysts for hydrogen-oxygen fuel cell with proton-conductive and anion-conductive electrolytes. Catalyst in Industry 8(3):265–273

    Article  Google Scholar 

  18. Department of Energy USA. Fuel cell technical team roadmap [Internet]. USA: Department of Energy; 2014 [cited 1 Nov 2017]. Available from: https://energy.gov/sites/prod/files/2014/02/f8/fctt_roadmap_june2013.pdf

  19. D'Urso C, Oldani C, Baglio V, Merlo L, Aric AS (2014) Towards fuel cell membranes with improved lifetime: Aquivion® Perfluorosulfonic Acid membranes containing immobilized radical scavengers. J Power Sources 272:753–758

    Article  CAS  Google Scholar 

  20. Luan Y, Zhang Y, Zhang H, Lei L, Li H, Liu Y (2008) Annealing effect of perfluorosulfonated ionomer membranes on proton conductivity and methanol permeability. J Appl Polym Sci 107:396–402

    Article  CAS  Google Scholar 

  21. Junsheng L, ** Y, Haolin T, Mu P (2010) Durable and high performance Nafion membrane prepared through high-temperature annealing methodology. J Membr Sci 361:38–42

    Article  Google Scholar 

  22. Lee K, Ishihara A, Mitsushima S, Kamiya N, Ota K (2003) Effect of recast temperature on diffusion and dissolution of oxygen and morphological properties in recast Nafion. ECS J Solid State Sci Technol 151(4):639–645

    Google Scholar 

  23. Liu D, Lai X, Ni J, Peng L, Lana S, Lin Z (2007) Robust design of assembly parameters on membrane electrodeassembly pressure distribution. J Power Sources 172:760–767

    Article  CAS  Google Scholar 

  24. Freya Th, Linardi M. Effects of membrane electrode assembly preparation on the polymer electrolyte membrane fuel cell performance. Electrochim Acta 2004;50:99–105

    Article  CAS  Google Scholar 

  25. Tong JY, Guo1 Q, Wang XX (2009) Properties and structure of SPEEK proton exchange membrane doped with nanometer CeO2 and treated with high magnetic field. Express Polym Lett 3(12):821–831

    Article  CAS  Google Scholar 

  26. Safronova EY, Stenina IA, Yaroslavtsev AB (2017) The possibility of changing the transport properties of ion-exchange membranes by their treatment. Petroleum Chem. 57:299–305

    Article  CAS  Google Scholar 

  27. Zhao Z, Hu J, Zhou Z, Zhong M (2007) The use of strong magnetic field treatment for preparation of proton exchange membrane doped by SeO2 and its electrochemical properties. Int J Electrochem Sci 12:5450–5463

    Google Scholar 

  28. Yaroslavtsev AB, Yampolskii YP (2014) Hybrid membranes containing inorganic nanoparticles. Mendeleev Communications 24(6):319–326

    Article  CAS  Google Scholar 

  29. Berezina NP, Kononenko NA, Timofeev SV (2002) Effect of conditioning techniques of perfluorinated sulphocationic membranes on their hydrophylic and electrotransport properties. J Membr Sci 209:509–518

    Article  CAS  Google Scholar 

  30. Feng K, Tang B and Wu PA. «H2O donating/methanol accepting» platform for preparation of highly selective Nafion-based proton exchange membranes. J Mater Chem A 2015;3:18546–18556

    Article  CAS  Google Scholar 

  31. Li HY, Liu YL (2014) Nafion-functionalized electrospun poly(vinylidene fluoride) (PVDF) nanofibers for high performance proton exchange membranes in fuel cells. J Mater Chem A 2:3783–3793

    Article  CAS  Google Scholar 

  32. Moore RB, Martin CR (1988) Chemical and morphological properties of solution-cast perfluorosulfonate ionomers. Macromolecules 21:1334–1339

    Article  CAS  Google Scholar 

  33. Nicholas WD, Yossef AE (2006) Nafion/poly(vinyl alcohol) blends: effect of composition and annealing temperature on transport properties. J Membr Sci 282:217–224

    Article  Google Scholar 

  34. Hensley E, Douglas W, Steven FD, Kent DA (2007) The effects of thermal annealing on commercial Nafion membranes. J Membr Sci 298:190–201

    Article  CAS  Google Scholar 

  35. Osung K, Shijie W, Da-Ming Z (2011) Effect of thermal annealing on proton conduction in ion exchange membranes. Mater Res Soc Symp Pro 1330

  36. Bruno RM, Cleverson AG, Elisabete IS, Muccillo R, Fabio CF (2014) Proton conductivity of perfluorosulfonate ionomers at high temperature and high relative humidity. Appl Phys Lett 104:091904

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. A.B. Yaroslavtsev for fruitful discussion and valuable remarks. The work was fulfilled in the framework of the project No. 17-79-30054 of the Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Sinitsyn.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mugtasimova, K.R., Melnikov, A.P., Galitskaya, E.A. et al. Fabrication of Aquivion-type membranes and optimization of their elastic and transport characteristics. Ionics 24, 3897–3903 (2018). https://doi.org/10.1007/s11581-018-2531-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2531-5

Keywords

Navigation