Log in

Biodegradable poly (ε-caprolactone)/lithium bis(trifluoromethanesulfonyl) imide as gel polymer electrolyte

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Poor conductivity and toxic technological garbage of polymer electrolyte has delayed energy storage application in electric vehicles. Biodegradable gel polymer electrolytes (GPEs) based on poly (ε-caprolactone) (PCL) are prepared. PCL is used to immobilize liquid electrolyte containing lithium bis(trifluoromethanesulfonyl) imide, ethylene carbonate, and propylene carbonate. Impedance spectroscopy, X-ray diffraction, and differential scanning calorimetry are used to characterize the ionic conductivity and structural and thermal properties of GPEs, respectively. For jelly-like GPEs, it exhibits liquid-like ionic conductivity of 1.69 × 10−3 S cm−1 at room temperature with a composition ratio (PCL:LiTFSI:EC:PC) of (22.5:7.5:35:35) (w/w). Results show that the polymer matrix forms cross-linked network within the liquid electrolyte, acting like an adhesive to hold the high fluidity liquid molecules. In temperature dependence studies, the GPEs are observed to obey Arrhenius equation indicating that ion transport occurs via hop** mechanism. The findings in XRD and DSC are in good agreement with conductivity results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Retrieve from http://www.paulchefurka.ca/WEAP/WEAP.html. Accessed 18 Jan 2017

  2. Wang Y, Liu B, Li QY, Cartmell S, Ferrara S, Power J (2015) Sources 286:330–345

    Article  CAS  Google Scholar 

  3. Scrosati B, Hassoun J, Sun YK (2011) Energy Environ Sci 4:3287–3295

    Article  CAS  Google Scholar 

  4. Xu B, Yue S, Sui Z, Zhang X, Hou S, Cao G, Yang Y (2011) Energy Environ Sci 4:2826–2830

    Article  CAS  Google Scholar 

  5. Giri S, Ghosh D, Das CK (2013) Adv Funct Mater 24:1312–1324

    Article  Google Scholar 

  6. Béguin F, Presser V, Balducci A, Frackowiak E (2014) Adv Mater 26:2219–2251

    Article  Google Scholar 

  7. Xu J, Wang Q, Wang X, **ang Q, Liang B, Chen D, Shen G (2013) ACS Nano 7:5453–5462

    Article  CAS  Google Scholar 

  8. Senthilkumar ST, Selvan RK, Melo JS, Sanjeeviraja C (2013) ACS Appl Mater Interfaces 5:10541–10550

    Article  CAS  Google Scholar 

  9. Chen WY, Liu YB, Ma Y, Yang WX, Power J (2015) Sources 273:1127–1135

    Article  CAS  Google Scholar 

  10. Li WL, **ng YJ, Yang G (2015) Electrochim Acta 151:289–296

    Article  CAS  Google Scholar 

  11. Woodruff MA, Hutmacher DW (2010) Prog Polym Sci 35:1217–1256

    Article  CAS  Google Scholar 

  12. Ikada Y, Tsuji H (2000) Macromol Rapid Commun 21:117–132

    Article  CAS  Google Scholar 

  13. Wang Y, Rodriguez-Perez MA, Reis RL, Mano JF (2005) Macromol Mater Eng 290:792–801

    Article  CAS  Google Scholar 

  14. Chiu CY, Chen HW, Kuo SW, Huang CF, Chang FC (2004) Macromolecules 37:8424–8430

    Article  CAS  Google Scholar 

  15. Woo HJ, Majid SR, Arof AK (2013) Solid State Ionics 252:102–108

    Article  CAS  Google Scholar 

  16. Fonseca CP, Neves S, Power J (2006) Sources 159:712–716

    Article  CAS  Google Scholar 

  17. Jayathilaka P, Dissanayake M, Albinsson I, Mellander B (2003) Solid State Ionics 156:179–195

    Article  CAS  Google Scholar 

  18. Howell FS, Bose RA, Macedo PB, Moynihan CT (1974) J Phys Chem 78:639–648

    Article  CAS  Google Scholar 

  19. J. O’M Bockris and A. K. N Reddy (1998) Plenum Press, New York 251–255.

  20. Chintapalli S, Frech R (1996) Solid State Ionics 86-88:341–346

    Article  CAS  Google Scholar 

  21. Forsyth M, Macfarlane DR, Meakin P, Smith ME, Bastow TJ (1995) Electrochemica Acta 40:2343–2347

    Article  CAS  Google Scholar 

  22. Agarwal S, Speyerer C (2010) Polymer 51:1024

    Article  CAS  Google Scholar 

  23. Bandara LRAK, Dissanayake MAKL, Mellander BE (1998) Electrochim Acta 43:1447–1451

    Article  CAS  Google Scholar 

  24. Bhide A, Hariharan K (2007) Eur Polym J 43:4253–4270

    Article  CAS  Google Scholar 

  25. Barbosa PC, Rodrigues LC, Silva MM, Smith MJ, Costa M (2010) ECS Trans 25:383–394

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the University of Malaya (RG324-15AFR) and the Ministry of Education of Malaysia (FP053-2014A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.J. Woo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajiri, W.N.S., Woo, H. Biodegradable poly (ε-caprolactone)/lithium bis(trifluoromethanesulfonyl) imide as gel polymer electrolyte. Ionics 23, 2657–2662 (2017). https://doi.org/10.1007/s11581-017-2021-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2021-1

Keywords

Navigation