Log in

Vibrational, electrical, and structural properties of PVDF–LiBOB solid polymer electrolyte with high electrochemical potential window

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Polyvinylidene difluoride (PVDF)–lithium bis(oxalato)borate (LiBOB) solid polymer electrolytes (SPEs) have been prepared by solution casting. The highest ionic conductivity achieved is 3.4610−3 S cm−1. Electrochemical potential window of the SPEs is found around 4.7 V. Interaction between PVDF and LiBOB is studied systematically. The changes of C–C, CF2, and CH2 vibration modes with an emerging shoulder are analyzed. At higher salt content, this shoulder becomes more prominent peak at the expense of CF2 vibration mode. This suggests the possible Li+⋯F coordination. Deconvolution of IR spectra region from 1750 to 1850 cm−1 has been carried out to estimate the relative percentage of free ions and contact ions. The finding is in good agreement with conductivity and XRD results. When more salt is present, the number of free ions percentage increases and the Full width at half-maximum (FWHM) of (110) plane is broadening. The Li+⋯F interaction breaks the folding patterns of polymer chain and enhances amorphousness domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abraham K, Alamgir M (1994) Room temperature polymer electrolytes and batteries based on them. Solid State Ionics 70:20–26

    Article  Google Scholar 

  2. Kerr JB, Sloop SE, Liu G, Han YB, Hou J, Wang S (2002) From molecular models to system analysis for lithium battery electrolytes. J Power Sources 110(2):389–400

    Article  CAS  Google Scholar 

  3. Xu JJ, Ye H (2005) Polymer gel electrolytes based on oligomeric polyether/cross-linked PMMA blends prepared via in situ polymerization. Electrochem Commun 7(8):829–835

    Article  CAS  Google Scholar 

  4. Stephan AM, Nahm K (2006) Review on composite polymer electrolytes for lithium batteries. Polymer 47(16):5952–5964

    Article  CAS  Google Scholar 

  5. Edström K, Brandell D, Gustafsson T, Nyholm L (2011) Electrodeposition as a tool for 3D microbattery fabrication. Interface-Electrochem Soc 20(2):41

    Google Scholar 

  6. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430

    Article  CAS  Google Scholar 

  7. Zoppi R, Fonseca C, De Paoli M-A, Nunes S (1996) Solid electrolytes based on poly (amide 6-b-ethylene oxide). Solid State Ionics 91(1):123–130

    Article  CAS  Google Scholar 

  8. Bakker A, Lindgren J, Hermansson K (1996) Polymer electrolytes based on triblock-copoly (oxyethylene/oxypropylene/oxyethylene) systems. Polymer 37(10):1871–1878

    Article  CAS  Google Scholar 

  9. Liu P, Verbrugge M, Soukiazian S (2006) Influence of temperature and electrolyte on the performance of activated-carbon supercapacitors. J Power Sources 156(2):712–718

    Article  CAS  Google Scholar 

  10. Loy DA, Shea KJ (1995) Bridged polysilsesquioxanes. Highly porous hybrid organic-inorganic materials. Chem Rev 95(5):1431–1442

    Article  CAS  Google Scholar 

  11. Schubert U, Huesing N, Lorenz A (1995) Hybrid inorganic-organic materials by sol-gel processing of organofunctional metal alkoxides. Chem Mater 7(11):2010–2027

    Article  CAS  Google Scholar 

  12. Choe H, Giaccai J, Alamgir M, Abraham K (1995) Preparation and characterization of poly(vinyl sulfone) and poly(vinylidene fluoride)-based electrolytes. Electrochim Acta 40(13):2289–2293

    Article  CAS  Google Scholar 

  13. Song J, Wang Y, Wan C (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77(2):183–197

    Article  CAS  Google Scholar 

  14. Cha BJ, Yang JM (2006) Effect of high-temperature spinning and PVP additive on the properties of PVDF hollow fiber membranes for microfiltration. Macromol Res 14(6):596–602

    Article  CAS  Google Scholar 

  15. Xu K, Zhang S, Poese BA, Jow TR (2002) Lithium bis(oxalato)borate stabilizes graphite anode in propylene carbonate. Electrochem Solid-State Lett 5(11):A259–A262

    Article  CAS  Google Scholar 

  16. Xu K, Zhang S, Jow TR, Xu W, Angell CA (2002) LiBOB as salt for lithium-ion batteries: a possible solution for high temperature operation. Electrochem Solid-State Lett 5(1):A26–A29

    Article  CAS  Google Scholar 

  17. Xu K, Zhang S, Jow TR (2003) Formation of the graphite/electrolyte interface by lithium bis(oxalato)borate. Electrochem Solid-State Lett 6(6):A117–A120

    Article  CAS  Google Scholar 

  18. Jiang J, Dahn J (2003) Comparison of the thermal stability of lithiated graphite in LiBOB EC/DEC and in LiPF6 EC/DEC. Electrochem Solid-State Lett 6(9):A180–A182

    Article  CAS  Google Scholar 

  19. Jiang J, Dahn J (2004) ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li [Ni0.1Co0.8Mn0.1] O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes. Electrochem Commun 6(1):39–43

    Article  CAS  Google Scholar 

  20. Wen T-C, Kuo H-H, Gopalan A (2002) The influence of lithium ions on molecular interaction and conductivity of composite electrolyte consisting of TPU and PAN. Solid State Ionics 147(1):171–180

    Article  CAS  Google Scholar 

  21. Kim C, Lee G, Liou K, Ryu KS, Kang S-G, Chang SH (1999) Polymer electrolytes prepared by polymerizing mixtures of polymerizable PEO-oligomers, copolymer of PVDC and poly (acrylonitrile), and lithium triflate. Solid State Ionics 123(1):251–257

    Article  CAS  Google Scholar 

  22. Holomb R, Xu W, Markusson H, Johansson P, Jacobsson P (2006) Vibrational spectroscopy and ab initio studies of lithium bis(oxalato)borate (LiBOB) in different solvents. J Phys Chem A 110(40):11467–11472

    Article  CAS  Google Scholar 

  23. Noor M, Careem M, Majid S, Arof A (2013) Characterisation of plasticised PVDF–HFP polymer electrolytes. Materials Research Innovations.

  24. Rahaman MHA, Khandaker MU, Khan ZR, Kufian MZ, Noor ISM, Arof AK (2014) Effect of gamma irradiation on poly(vinyledene difluoride)–lithium bis(oxalato)borate electrolyte. Phys Chem Chem Phys 16(23):11527–11537

    Article  Google Scholar 

  25. Wang S, Qiu W, Li T, Yu B, Zhao H (2006) Properties of lithium bis(oxalato)borate (LiBOB) as a lithium salt and cycle performance in LiMn2O4 half cell. Int J Electrochem Sci 1:250–257

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial grant from the University of Malaya through RU022G-2014 and Ministry of Higher Education of Malaysia (MOHE) through FP053-2014A. Faisal I. Chowdhury would like to thank University of Chittagong, Bangladesh for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Faisal I. Chowdhury or H. J. Woo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chowdhury, F.I., Khandaker, M.U., Amin, Y.M. et al. Vibrational, electrical, and structural properties of PVDF–LiBOB solid polymer electrolyte with high electrochemical potential window. Ionics 23, 275–284 (2017). https://doi.org/10.1007/s11581-016-1857-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1857-0

Keywords

Navigation