Log in

Ion dynamics in methylcellulose–LiBOB solid polymer electrolytes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A polymer electrolyte system comprising methylcellulose (MC) as the host polymer and lithium bis(oxalato) borate (LiBOB) as the lithium ion source has been prepared via the solution cast technique. The electrolyte with the highest conductivity of 2.79 μS cm−1 has a composition of 75 wt% MC–25 wt% LiBOB. The mobile ion concentration (n) in this sample was estimated to be 5.70 × 1020 cm−3. A good correlation between ionic conductivity, dielectric constant, and free ion concentration has been observed. The ratio of mobile ion number density (n) at a particular temperature to the concentration n 0 of free ions at T = ∞ (n/n 0) and the power law exponents (s) exhibit opposite trends when varied with salt concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ramanarayanan TA, Singhal SC, Wachsman ED (2001) High temperature ion conducting ceramics. The Electrochemical Society Interface. Summer 1:22–27

    Google Scholar 

  2. Bebelis S, Bouzek K, Cornell A, Ferreira MGS, Kelsall GH, Lapicque F, Ponce de Leon C, Rodrigo MA, Wash FC (2013) Highlights during the development of electrochemical engineering. IChemE Journal 10:1998–2020

    Article  Google Scholar 

  3. Yang J, Ghobadian S, Goodrich PJ, Montazami R, Hashemi N (2013) Miniaturized biological and electrochemical fuel cells: challenges and applications. Phys Chem Chem Phys 15:14147

    Article  CAS  Google Scholar 

  4. De Souza FL, Leite ER (2010) Hybrid polymer electrolytes for electrochemical devices. In: Santos D, Sequeira S (eds) Polymer electrolytes: fundamentals and applications. Woodhead Publishing, Cambridge, pp 583–602

  5. Zapata VH, Castro WA, Vargas RA (2012) Electrical conductivity relaxation in PVOH+LiH2PO4+Al2O3 polymer composites. Ionics 19:83–89

    Article  Google Scholar 

  6. Winter M, Brodd RJ (2004) What are batteries, fuel cells and supercapacitors? Chem Rev 104:4245–4269

    Article  CAS  Google Scholar 

  7. Ahmad MM (2015) Lithium ionic conduction and relaxation dynamics of spark plasma sintered Li5La3Ta2O12 garnet nanoceramics. Nano Res Lett 10:58

    Article  Google Scholar 

  8. Jonscher AK (1977) The ‘universal’ dielectric response. Nature 267:673–679

    Article  CAS  Google Scholar 

  9. Almond DP, West AR (1983) Mobile ion concentrations in solid electrolytes from an analysis of AC conductivity. Solid State Ionics 9–10:277–282

    Article  Google Scholar 

  10. Almond DP, West AR (1983) Impedance and modulus spectroscopy of “real” dispersive conductors. Solid State Ionics 11:57–64

    Article  CAS  Google Scholar 

  11. Almond DP, Duncan GK, West AR (1983) The determination of hop** rates and carrier concentrations in ionic conductors by a new analysis of ac conductivity. Solid State Ionics 8:159–163

    Article  CAS  Google Scholar 

  12. Almond DP, Hunter CC, West AR (1984) The extraction of ionic conductivities and hop** rates from a.c. conductivity data. J Mater Sci 19:3236–3248

    Article  CAS  Google Scholar 

  13. Nowick AS, Lim BS, Vaysleyb AV (1994) Nature of the ac conductivity of ionically conducting crystals and glasses. J Non-Cryst Solids 1243:172–174

    Google Scholar 

  14. Lunkenheimer P, Loidl A (2003) Response of disorder matter to electromagnetic fields. Phys Rev Lett 91:207601

    Article  CAS  Google Scholar 

  15. Zhbankov RG (1966) New types of cellulose derivatives. In: Infrared spectra of cellulose and its derivatives. Consultants Bureau, New York, pp 131–165. ISBN 978-1-4899-2732-3

  16. Thakur VK, Thakur MK (2015) Handbook of sustainable polymers: processing and applications. CRC, Boca Raton. ISBN 9789814613538

  17. Ye D, Farriol (2005) A facile method to prepare methylcellulose from annual plants and wood using iodomethane. E-Polymers 41:1–13

    Google Scholar 

  18. Nasatto PL, Pignon F, Silveira JLM, Duarte MER, Noseda MD, Rinaudo M (2015) Methylcellulose, a cellulose derivative with original physical properties and extended applications. Polymers 7:777–803

    Article  CAS  Google Scholar 

  19. Shokri J, Adibkia K (2013) Application of cellulose and cellulose derivatives in pharmaceutical industries. Cellulose—medical, pharmaceutical and electronic applications. Intech 3:47–66

    Google Scholar 

  20. Pinotti A, Garci MA, Martino MN, Zaritzky NE (2007) Study on microstructure and physical properties of composite films based on chitosan and methylcellulose. Food Hydrocoll 21:66–72

    Article  CAS  Google Scholar 

  21. Nik Aziz NA, Idris NK, Isa MIN (2010) Solid polymer electrolytes based on methylcellulose: FTIR and ionic conductivity studies. Int J Polym Anal Charact 15:319–327

    Article  CAS  Google Scholar 

  22. Chiappone A, Gerbaldi C, Roppolo I, Garino N, Bongiovanni R (2015) Degradable photopolymerized thiol-based solid polymer electrolytes towards greener Li-ion batteries. Polymer 75:64–72

    Article  CAS  Google Scholar 

  23. Wu X-L, **n S, Seo H-H, Kim J, Guo Y-G, Lee J-S (2011) Enhanced Li+ conductivity in PEO–LiBOB polymer electrolytes by using succinonitrile as a plasticizer. Solid State Ionics 186:1–6

    Article  CAS  Google Scholar 

  24. Tominaga Y, Yamazaki K, Nanthana V (2015) Effect of anions on lithium ion conduction in poly(ethylene carbonate)-based polymer electrolytes. J Electrochem Soc 162:A3133–A3136

    Article  CAS  Google Scholar 

  25. Ye L, Feng Z (2010) . Polymer electrolytes as solid solvents and their applications, chapter 14. In: Santos D, Sequeira S (eds) Polymer electrolytes: fundamentals and applications. Bei**g Institute of Technology, China, pp 550–581

  26. Holomb R, Xu W, Markusson H, Johansson P, Jacobsson P (2006) Vibrational spectroscopy and ab initio studies of lithium bis(oxalato) borate (LiBOB) in different solvents. J Phys Chem A 110:11467–11472

    Article  CAS  Google Scholar 

  27. Zhang SS (2006) An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochem Commun 8:1423–1428

    Article  CAS  Google Scholar 

  28. Yang L-J, Yang X-Q, Huang K-M, G-Zhu J, Shang H (2009) Dielectric properties of binary solvent mixtures of dimethyl sulfoxide with water. Int J Mol Sci 10(3):1261–1270

    Article  CAS  Google Scholar 

  29. Garusinghe GSP, Bessey SM, Boyd C, Aghamoosa M, Frederick BG, Bruce MRM, Bruce AE (2015) Identification of dimethyl sulfide in dimethyl sulfoxide and implications for metal–thiolate disulfide exchange reactions. RSC Adv 5:40603–40606

    Article  CAS  Google Scholar 

  30. Arof AK, Amiruddin S, Yusof SZ, Noor IM (2013) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys 16:1856–1867

    Article  Google Scholar 

  31. Lee TK, Afiqah S, Ahmad A, Dahlan HM, Rahman MYA (2012) Temperature dependence of the conductivity of plasticized poly(vinyl chloride)–low molecular weight liquid 50% epoxidized natural rubber solid polymer electrolyte. J Solid State Electrochem 16:2251–2260

    Article  CAS  Google Scholar 

  32. Kumar M, Tiwari T, Srivastava N (2012) Electrical transport behavior of bio-polymer electrolyte system: potato starch + ammonium iodide. Carbohydr Polym 88:54–60

    Article  CAS  Google Scholar 

  33. Kumar M, Srivastava N (2014) Investigation of electrical and dielectric properties of NaI doped synthesized systems. J Non-Cryst Solids 389:28–34

    Article  CAS  Google Scholar 

  34. Vieira DF, Avellaneda CO, Pawlicka A (2007) Conductivity study of a gelatin-based polymer electrolyte. Electrochim Acta 53:1404–1408

    Article  CAS  Google Scholar 

  35. Ravi M, Bhavani S, Pavani Y, Narasimha Rao VVR (2013) Investigation on electrical and dielectric properties of PVP:KCLO4 polymer electrolyte films. Indian J Pure Appl Phys 51:362–366

    CAS  Google Scholar 

  36. Shukla N, Thakur AK, Shukla A, Marx DT (2014) Ion conduction mechanism in solid polymer electrolyte: an applicability of Almond–West formalism. Int J Electrochem Sci 9:7644–7659

    CAS  Google Scholar 

  37. Funke K (1993) Jump relaxation in solid electrolytes. Prog Solid State Chem 22:111–195

    Article  CAS  Google Scholar 

  38. Shukur MF, Ithnin R, Sonsudin F, Yahya R, Ahmad Z, Kadir MFZ (2013) Conduction mechanism and dielectric properties of solid biopolymer electrolyte incorporated with silver nitrate. Adv Mater Res 701:115–119

    Article  Google Scholar 

  39. Tiwari T, Srivastava N, Srivastava PC (2013) Ion dynamics study of potato starch + sodium salts electrolyte system. Int J Electrochem 2013:Article ID 670914, 8 pp

  40. Srivastava N, Kumar M (2014) Ion dynamic behavior in solid polymer electrolyte. Solid State Ionics 262:806–810

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from the University of Malaya (IPPP no. PG112-2013A) and from the Ministry of Higher Education Malaysia (FRGS no. FP053-2014A) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Arof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusof, S.Z., Woo, H.J. & Arof, A.K. Ion dynamics in methylcellulose–LiBOB solid polymer electrolytes. Ionics 22, 2113–2121 (2016). https://doi.org/10.1007/s11581-016-1733-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1733-y

Keywords

Navigation